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The first part of the talk seems
Irrelevant to second half and title.



What I’'m working on now?

Iterative Refine a ML solution

Numerical linear algebra and beyond NLA...

Lexing Ying (Stanford) Jose Blanchet (Stanford) Shihao Yang (Gatech)



Consider How you use ChatGPT...

~N
What is the most efficient route from Times Square

to Chelsea Market that minimizes walking?

J

-
Option 1: Subway

1. Walk to a Nearby Subway Entrance: Head to the
Times Sq—42nd Street station.

2. Board the E Train: Catch an E train heading
downtown (toward World Trade Center).

3. Ride to 8th Avenue—14th Street Station: Get off at
this station (roughly 4 stops).

4. Walk to Chelsea Market: Exit the station and walk
east on 14th Street for a few blocks until you reach
Chelsea Market at 75 9th Avenue.

\_

>©®

double-check

with a map

2 stops for A
3 stops for C/E

1. At Times Square: Enter the Times Square—42nd Stree?
station.

2. Board the 1 Train: Hop on a downtown 1 train (the
red line).

3. Ride to 14th Street: Stay on until you reach the 14th
Street station.

4. Exit Appropriately: Use the exit that leads toward 9th
Avenue —this drop-off point is just a short walk from
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Physics-Informed Debiasing the ML Solution

. R . Evaluate the error R

Aeer—

2 )
This Position Paper:

Aggregate step 1 and step 2

via First-Principle
q )

Step 1: Machine learning model fit rough information y LStep 2: Evaluating the error of the Machine Learning model

In Numerical Linear Algebra:

Estimate x — X via

Numerical Solving Ax = b and get & ; ; ¢
umerical Solving Ax and get x Solving A(x — X) = b — AX and get X



Physics-Informed Debiasing the ML Solution

g R g Evaluate the error h

|

This Position Paper:
Aggregate step 1 and step 2
via First-Principle

Step 1: Machine learning model fit rough information LStep 2: Evaluating the error of the Machine Learning model

Step 2. Correct with a Trustworthy Solver

Step 1. Train a Surrogate (ML) Model

= GP (m=0.00)
MLP (m=-0.21)
- SCaSML (m=-0.17)

Finite Element
- Correction enables
) Inference Time Scaling

1 1 1 1
0 200 400 600 800
Evaluation Steps

| | |

Simulation




Our Framework

Step 1: Sceintific Computing as Machine Learning

Scientific Machine Learning
Example 1 0 = f, X,- — (X,-,f (Xi))

Function fitting

Example 2 0=A"", X =(x,f(x;) SolingAu=f
Solving PDE
Example 3 0=A, X =(x;,Ax)

Estimation A via Randomized SVD



Our Framework
Step 2: Consider a Application

Example 1 0=f X =(x,f(x)) D(0) = J f(x)dx
Example 2 0=A"" X =xfx) 0= (A7) ()

Example 3 0=A, X =(x,Ax) D(0) = tr(A), eigs(A)



Our Framework

Scientific Machine Learning

Downstream application




Our Framework

Scientific Machine Learning Downstream application

"

)
j Physics-Informed! (Structure of @)

How to estimate CD(@’) — OO)?

Why it is easier than directly estimate ®(0)? Variance Reduction



A Numerical Linear Algebra Example

(X, X,} ~Py— 0
Scientific Machine Learning

Example 0=A, X =(x,Ax;)

N —
Subspace methods

A4

Randomized SVD: é’ — A




A Numerical Linear Algebra Example

&

Scientific Machine Learning Downstream application
Example 0=A, X =(x,Ax;) D(0) = 1r(A)
N ——— ——

(Randomized) Subspace methods

A4

Application in graph theory, guantum ...

Randomized SVD: 0 = A - CI)(@) = tr(A)




A Numerical Linear Algebra Example

&

Scientific Machine Learning Downstream application
Example 0=A, X =(x,Ax;) D(0) = 1r(A)
N ——— ——

(Randomized) Subspace methods

A4

A Va\

Randomized SVD: 0 = A - CI)(@) = tr(A)
_|_

D(O) — D) = tr(A — A)

Estimate tr(A — A) via Hutchinson's estimator

Lin 17 Numerische Mathematik and Mewyer-Musco-Musco-Woodruff 20



More Examples...

Scientific Machine Learning Downstream application
Example 1 0=1 X =(x,flx) DPO)= I F9(x)dx
Example 2 =AY X =(,flx) @O =0x
Example 3 0=A, X =(x,Ax) D(0) = tr(A)
Estimation A via Randomized SVD Estimate tr(A — A) via Hutchinson's estimator

Example 4 Siegel J W, Xu J. Sharp bounds on the approximation rates, metric entropy, and
n-widths of shallow neural networks.

Foundations of Computational Mathematics, 2024, 24(2): 481-537.




The 101 Example

Example 0 =1, X; = (Xi,f (Xi))

\ 4

Machine Learning: é’ = f




The 101 Example

{Xla "'9Xn} ~ [FDH — é é)

Scientific Machine Learning Downstream application

Example 0 =f’\__3(l_=, xi’f(xi)) D(0) = [(f(x))dx

\ 4

Machine Learning: 0 = f > (D(é) = Jf (x)dx



The 101 Example

Scientific Machine Learning Downstream application
Example ORP A G o0 - | (s
\ 4 |
Machine Learning: 0 = f > (D(é) = Jf (x)dx

_|_

D(6) — D) = J(f(x) — f(x))dx
N
Using Monte Carlo Methods to approximate



Optimal Algorithm!

- Jose Blanchet, Haoxuan Chen, , Lexing Ying. When can Regression-Adjusted Control Variates Help?
Rare Events, Sobolev Embedding and Minimax Optimality Neurips 2023

a) Statistical optimal regression is the optimal control variate
D) It helps only If there isn’t a hard-to-simulate (infinite variance)
rare and extreme event

g control the extremeness

v v Rare and extreme event

, —>

(a) (b)



PDE Solver



Let’s consider Au = f

The PDE Example

Va\

{X19 "'9Xn} ~ |]:D6’ — H

Scientific Machine Learning

O=u, X, = (f(x)

\—

\ 4

FEM/PINN/DGM/‘[ensor/Sparse Grid/...:
0=1u




Let’s consider Au = f

The PDE Example

(X, X} ~P,— 0 é)

Scientific Machine Learning Downstream application
=u X = (x.f(x.
» K= Of) 0) = u),

\ 4

What is ®(0) — ®(0) = u(x) — i(x) ?

FEM/PINN/DGM/‘[ensor/Sparse Grid/...:
0=u - D(0) = ux)




Let’s consider Au = f

The PDE Example

(X, X} ~P,— 0 é)

Scientific Machine Learning Downstream application
— 0=u, X =(,f(x
Au =J » A= S ) = ww,

' \ 4

FEM/PINN/DGM/‘[ensor/Sparse Grid/...:
o= - D) = )

Au-iy=f-7 T gy - i) = | (- o

What is ®(0) — ®(0) = u(x) — i(x) ?




Works for Semi-linear PDE

oU Can .
you do simulation
a (.X t) +AU(X ....... t) +f( U(x t)) T ? for nonlinear equaﬂgn’?

Keeps the structure to enable brownian motion simulation

@

&0

----------------------------------------------------------------------------------
. 3
. 3

C *
.....
-------------------------------------------------------------------------------



Works for Semi-linear PDE

------------------------------------------------------
* 03

—(x, 1) + AU(x, 1) + (U(x, 1) =0

Keeps the structure to enable brownian motion simulation

ol @ P — | A
— (. ) HADO D) + A0, 1) = g0x, 1)



Works for Semi-linear PDE

------------------------------------------------------
K .

oU
a—(x 1)+ AU +AU(x, 1) =

Subtract two equations

a(U _ U) ..........................................................................
)+ AL = D)0+ 0, 05,1+ UG, = 00, = 08, 05, 0) = ¢G50

~

(t, (U - U)x. r))



Improvement (%)
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101
Evaluation Numbers

0.00 -

Inference-Time Scaling

have closed-form solution g(x) =

-40.7%

MLP

SCaSML

exp(T+ ), x;

I +exp(T+ ), x)

Method Convergence Rate
PINN O(n=%
MLP O(n=1"%
ScaSML O(n~12=s/dy




Bette

a)

Methods

r

Scaling Law

Surrogate Model

Feynman Path Simulation

Simulation-Calibrated Scientific Machine Learning

i

ou 0%u
E+¥+f(u)=0

du
= oz Hw=0

A|
A M :Residual of

-

Training time

Inference time

Scaling
Law

n collocation points at training time

Error: O,(n™7)

n collocation points at finest simulation

Error: 0,(n"7)

n collocation points at training time

n collocation points at finest simulation

Error: Od(n""%)

error of the error of the

surrogate model simulation algorithm

b)

4 x1071 4
0\ — GP (y=0.37)
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Training Size

(a)d =20

Relative L2 Error
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Training Size

(b) d = 40

6 %1071 — GP (y=0.36)
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Training Size

(c)d =60

Relative L2 Error
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@ SCaSML

Simulation-Calibrated
Scientific Machine Learning

Physics-Informed Inference Time Scaling via
Simulation-Calibrated Scientific Machine Learning

Zexi Fan!, Yan Sun 2, Shihao Yang?®, Yiping Lu**

! Peking University 2 VisaInc. ° Georgia Institute of Technology * Northwestern University

fanzexi_francis@stu.pku.edu.cn,yansun414Qgmail.comn,
shihao.yang@Qisye.gatech.edu,yiping.lu@northwestern.edu

https.//2prime.github.io/files/scasml techreport.pdf




Our Aim Today : A Marriage

When Neural Network is good

No Simulation cost is needed

Machine
Learning

Simulation



Our Aim Today : A Marriage

When Neural Network is bad

Machine
Learning

Provide pure Simulation solution



Our AIM Today: A Marriage

Machine
Learning

Simulation

Using ©irmuiation to
—_



But your talk is on sketch-and-
recondition?

Ejrprising(?) Implementation of Pre-condition via




@ NUMERIGAL
9 LINEAR
' LGEB D

e

WEdition

L LoypD N. TREFETHEN
Davip Bau, |l

Tale 2: Preconditioning

”In ending this book with the subject of preconditioners, we find ourselves at the

philosophical center of the scientiffc computing of the future.”

— L. N. Trefethen and D. Bau III, flumerical Linear Algebra |TB22

Nothing will be more central to computational
science in the next century than the art of
transforming a problem that appears intractable into
another whose solution can be approximated

rapidly.



What is precondition

lllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllll

hardness depend on k(A) hardness depend on

. |

Become easier when B ~ A



A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b



A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b

lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

llllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll

» Using the approximate solver to approximate x — x; via Bx, = b — Ax,

Easy to solve for b — Ax, is small




A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b terative Refinement Algorithm
....................................................................................................................... O
S 2 x; satisfies the equation A(x — Z x)=b—A Z X;
=1 =1 =1

[ f :
Using the approximate solver to approximate x — Z x;viaBx;,, =b—A Z X;
=l i=1 5

L4
lllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllllll



A New Way to Implement Precondition

» Debiasing is a way of solving Ax = b

» Using an approximate solver Bx; = b lterative Refinement Algorithm

Preconditioned Jacobi lteration



A New Way to Implement Precondition
Via

 Step 1: Aim to solve (potentially nonlinear) equation A(u#) = b

use Machine Learning

 Step 2: Build an approximate solver A(if) ~ b Unrealiable approximate

solver as preconditioner

* Via machine learning/sketching/finite element....

» Step 3: Solve u — i

N

AIM: Debiasing a Learned Solution = Using Learned Solution as preconditioner!




Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem

N \

---------------------------------------------------------------------------------------------
.

ST R A A—lb
X, = (x, Ax) A DA) =4
= —— — Elgenvalue of A

“Randomized Numerical Linear Algebra”/Sketching

-y

“Sketch-and-Solve”

It seems easier to train a bi-directional LSTM with attention }
than to compute the SVD of a large matrix. —Chris Re

NeurIPS 2017 Test-of-Time Award, Rahimi and Recht
(Rahimi and Recht, 2017). }



Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem

\ \

---------------------------------------------------------------------------------------------
.

T S A e ( A—lb
X' — (xa Ax) A (D(A)

b S B

L\Eigenvalue of A

Project to (Randomized) Subspace methods

\ 4

Esimtation of A: A = 00'A —_— CD(@) = svd(A)
“Randomized SVD”




Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem

\

(A

L\Eigenvalue of A

What is ®(0) — ®(0)?

\ 4

Esimtation of A: A = 00'A —_— CI>(6A’) = svd(A)

“Randomized SVD”



Randomized NLA as Machine Learning

AIM: using matrix-vector multiplication to compute eigenvalue/least square problem

\ \

---------------------------------------------------------------------------------------------
.

T S A e A—lb
X = (x, Ax) A DA) =)
= —— — Eigenvalue of A

!

Structure here: © is the solution of a fixed point equation
D(0) — D(0) — VOO)(@ — 0) = O(c?)

“A I\I?Mon Step\

Radomized estimation Exact estimation
(In)exact Sub-sample Newton Method/Sketch-and-Precondtion




Relationship with Inverse Power Methods

(Approximate)

Inverse Power Method Our Method

.....................................................................

X, =@ —-A)X, L= —ATA—A)X,

0 L 4
\d
SEEEEEEEEEEEEEEEEEEEEEEEEEEEEEEE ‘lllllllllllllllllllllllllllllllll-l'

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Relationship with Inverse Power Methods

(Approximate)
Our Method
Inverse Power Method
T ............................
Xpp1 = U= X, =@ -A)]A = AKX,
pa e
Replage with an approXimate Ture eigenvector is the fix poinAt
solver A changes thefixed point or every approximate solver A

Take Hoem Message 1.
Power the Residual but not Power the vector

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Relationship with Inverse Power Methods

(Approximate)
Our Method
Inverse Power Method

T .............................
X1 = U= A) X X =@U-A)A-AX,

................................
Replaf:e with an approximate Ture eigenvector is the fix poinAt
solver A changes the fixed point for every approximate solver A

How do you Se|?\Ct the Nystrém approximation A = UAUT

preconditioner A? Using Woodbury to compute (I — A)™!

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Why better than Directly DMD

“Sketch-and-Solve” VS “Sketch-and-Precondition”

Sketch-and-Solve Sketch-and-Precondition
Least Square £ 2 Sketch-and-precondition, Sketch-and-project,
a - lterataive Sketching, ....
Low rank Idea 1: plug in a SVD Solver: Random SVD } Our Work!
Approx ldea 2: plug in a inverse power method g }
Use sketched matrix A as Use sketched matrix A as
an approximation to A an precondition to the probelm

Sorry... but | can’t see the

relationship....

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Why better than Directly DMD

“Sketch-and-Solve” VS “Sketch-and-Precondition”

Sketch-and-Solve Sketch-and-Precondition
Least Square TP Sketch-and-precondition, Sketch-and-project,
a - lterataive Sketching, ....
Low rank Idea 1: plug in a SVD Solver: Random SVD &) :
Approx ldea 2: plug in a inverse power method %’Q QOur Work!
Use sketched matrix A as Use sketched matrix A as

an approximation to A an precondition to therobelm

We only sketch
the Hessian

/@ Idea: using (approximate) Newton method to solve the Lagrange from

A
. minu ' Au — Ax'x — 1)
]

Thus Our convergence isilinear-quadratic:

* v
llllllllllllllllllllllllllllllllllllll

Contraction coefficient improves when sketching quality increases

Ruihan Xu, Yiping Lu. What is a Sketch-and-Precondition Derivation for Low-Rank Approximation? Power Error or Power Estimation?



Theortical Garuntee

Computing eigenvector

Theorem 2.2: Convergence Rate of EPSI

------------------------------------------------

-----------------------------------------------

shares a same column space with A. Let A = VAVT = )\*v*v* + V2A2V2 be its eigen-
decomposition, where A\, = \; is its max eigenvalue and As = diag(Ae, A3, -+ , A\y) satisfying
Ay > A3 > -+ > A\,. Then EPSI yields a (normalized) series {ur} which converges to wu.

in a linear-quadratic behavior. Suppose that u; satisfies IV ”2 k”’“” < € with Ale < 1, then the

convergence of ui. 1 is guaranteed by Better embedding
convergence faster

o -,

21
[V ||

L e e

Qudratic convergence

-------




Computing top-k eigenvctors

Algorithm 2 Lazy-EPSI for Computing the First k Singular Vectors

Require: A, the input matrix; k£ € Z™, the number of components; ¢max € Z™, the maximum number

of iterations.

1: for g =1 to gmax do
2: U<+ || > Initialize U as an empty matrix.
3 EPSI Iteration: Update first k£ eigenspace estimation U
4 forf =1 (t,f )@rgﬁ; Using EPSI to update each eigenvectors
0: B3 e, S > Compute rayleigh quotient estimation A, for the sth eigenvector.
6 di i — (I —UUNAT-UUT) = NI) NI - UUT)AI -UUT) — A)ug > Update dig;. |
7 kU"(—""o'ﬁ'h'([ ,'1’1"23;1])""""'"'"'"'"'"'"'"'"'""""'""""'""E'Kﬁﬁéﬁ'd"g'i'éfr'ri'—'s'éﬁ'r'riia’é'Bi*'ﬁﬁé'gb'iiéfﬁ'z'éd'"Z‘igl;'l"f'd'U"'
8 end for
9 Orthogonalization step: Use Estimated Eigenvector as Rangefinder
10: I« UUT > Compute the projection matrix II.
11: Ay + IIAII > Compute the projected matrix Ay.
12: (U1, u24q,...,uk 1] < SVD(Ay) > Perform SVD to update u} ;.
13: end for ., .

Using new basis as embedding as RandSVD ,
14: return U > Return the updated matrix U.




Theo rtical Garu ntee Projection makes the error

Computing eigenvector

propagation quadratic

Lemma 2.3: Local Convergence Rate for Lazy-EPSI

= ViAV}| +
VQAQVQT, where V7 has size n X k and the diagonal of Aj, As is in des¢génding order. The
approximation A of A satisfies A — Inl = A< A-— nl. Suppose that §/, which is the 7 — 1

eigenspace estimation, satisfies HV;EU | < € for small constant € < 60u =) Then 4, =
(I -UUNAI -UUT) = \I)~Y((I —UU AU - UUT) — A)u! satfsfies:

Suppose that PSD matrix A € R®"*" has exact eigendecomposition A = V

q
Va'wgall 1 35N VTl - ai= ) I = AW 4l
lugall  ~ = T—e0 i — Aert M ludll (N = Agga)? (oA
N | \— ———
linear convergence . error caused by imperfect projection
where €y = max{4()‘i_n)"“+1) HVzTule, 68,,;‘1 1V, U, |2} with U, = Uy, Uz, -+, Ug], and ¢; is a small

constant that depends on k.



Eigenvalue Computation

Lazy-EPSI

10°
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Subspace Iteration
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Runing Time

performance in 50 experiments

EPSI quantile
—EPSI mean

inexact RQI quantile
—inexact RQIl mean

0.5 1
Time

1.5

1-svd comparison

e~ EPSH(K=600)
\ T | - EPSI(k=200)

...... R L[N P SK=400)
.............. SRR —— .,...',.‘.\............_.......................‘+Davidson method
........... ".,‘.. \l \' ,‘.‘ﬁinexact-RQl
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(b) n = 2000,k = 10 °

1-svd comparison

| |-~ EPSI(k=600)
11+ EPSI(k=200)
EPSI(k=400)
~Davidson method
~inexact-RQl |1

.......

lllllll

(c) n = 4000,k = 10 °



What is a Sketch-and-Precondition Derivation for Low-Rank

Approximation? Inverse Power Error or Inverse Power Estimation?

Ruihan Xu * Yiping Lu !

Abstract

Randomized sketching accelerates large-scale numerical linear algebra by reducing computa-
tional complexity. While the traditional sketch-and-solve approach reduces the problem size di-
rectly through sketching, the sketch-and-precondition method leverages sketching to construct a
computational friendly preconditioner. This preconditioner improves the convergence speed of

iterative solvers applied to the original problem, maintaining accuracy in the full space. Further-
more, the convergence rate of the solver improves at least linearly with the sketch size. Despite
its potential, developing a sketch-and-precondition framework for randomized algorithms in low-
rank matrix approximation remains an open challenge. We introduce the Error-Powered Sketched
Inverse Iteration (EPSI) Method via run sketched Newton iteration for the Lagrange form as a
sketch-and-precondition variant for randomized low-rank approximation. Our method achieves

theoretical guarantees, including a convergence rate that improves at least linearly with the sketch
size.



Another Supersing Fact...

lteration lies in the Krylov Subspace

- enable dynamic mode decomposition
- Online fast update

Experiment Collect Data DMD

a) Diagnostics

+ past future
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b) Future state prediction




DMD with First-Order Feedback
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DMD with First-Order Feedback

Dynamic modes

Project to the
Span of modes

-

Error Feedback at 1 + 1

e —

b) Future state prediction
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DMD with First-Order Feedback

Dynamic modes

Project to the
Span of modes
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-------------------------------------------------------------------------

Error Feedback at r + 1
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: b) Future state prediction
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No matrix inverse, No SVD computation
Only a n X r QR decomposition
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Im

Faster than Recomputation!
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Grid index

Prediction of Tube Flow

Stable Flow
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| What is about?
(X, . X,} ~Py— 00— DO

Step 1: Using Machine Learning to fit the rough function/environment

{» SCaSML

Step 2: Using validation dataset to know how much mistake machine
learning algorithm has made

-----------------------------------------------------------------

-----------------------------------------------------------------

Using ML surrogate during inference time to improve ML solution

McCORMICK SCHOOL OF

ENGINEERING Yiping Lu yiping.lu@northwestern.edu
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