
Lecture 8: Ito-Taylor Expansion I

Zhongjian Wang∗

Abstract

Derivation of Ito-Taylor Expansion, notation of stochastic integrals, coefficient
functions

1 Deterministic Analogue

Consider ODE:
d

dt
X = a(X), X(t) = X0 +

∫ t

0

a(X(s)) ds, (1.1)

chain rule on any f :
d

dt
f(X) = a(X)f ′(X) ≡ Lf(X), (1.2)

or:

f(X) = f(X0) +

∫ t

0

Lf(X)(s) ds. (1.3)

Applying (1.3) to a(X(s)) in (1.1), we get:

X(t) = X0 +

∫ t

0

(
a(X0) +

∫ s

0

La(X)(z) dz

)
ds

= X0 + a(X0)

∫ t

0

ds+

∫ t

0

∫ s

0

La(X)(z) dz ds. (1.4)

Repeating once more:

X(t) = X0 + a(X0)

∫ t

0

ds+ La(X0)

∫ t

0

∫ s

0

dz ds+R, (1.5)

with:

R =

∫ t

0

∫ s3

0

∫ s2

0

L2a(X)(s1)ds1 ds2 ds3.
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Continuing this process n times, one recovers Taylor expansion in integral form:

f(X)(t) = f(X0) +
n∑

j=1

tj

j!
(Ljf)(X0)

+

∫ t

0

∫ sn+1

0

· · ·
∫ s2

0

(Ln+1f)(X)(s1) ds1 · · · dsn+1. (1.6)

2 Ito-Taylor Expansion

Consider Ito eqn:

Xt = X0 +

∫ t

0

a(Xs) ds+

∫ t

0

b(Xs) dWs, (2.7)

Ito formula gives:

f(Xt) = f(X0) +

∫ t

0

(L0f)(Xs) ds+

∫ t

0

(L1f)(Xs) dWs, (2.8)

L0 = a
d

dx
+

1

2
b2

d2

dx2
,

L1 = b
d

dx
.

Substitute (2.8) into (2.7):

Xt = X0

+

∫ t

0

(
a(X0) +

∫ s

0

(L0a)(Xz) dz +

∫ s

0

(L1a)(Xz) dWz

)
ds

+

∫ t

0

(
b(X0) +

∫ s

0

(L0b)(Xz)dz +

∫ s

0

(L1b)(Xz)dWz

)
dWs

= X0 + a(X0)

∫ t

0

ds+ b(X0)

∫ t

0

dWs +R, (2.9)

remainder:

R =

∫ t

0

∫ s

0

(L0a)(Xz)dzds+

∫ t

0

∫ s

0

(L1a)(Xz)dWzds

+

∫ t

0

∫ s

0

(L0b)(Xz)dzdWs +

∫ t

0

∫ s

0

(L1b)(Xz) dWzdWs. (2.10)

Continuing once more by applying Ito formula to L1b(Xz):

Xt = X0 + a(X0)

∫ t

0

ds+ b(X0)

∫ t

0

dWs

+(L1b)(X0)

∫ t

0

∫ s

0

dWzdWs +R1, (2.11)
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remainder:

R1 =

∫ t

0

∫ s

0

(L0a)(Xz)dzds+

∫ t

0

∫ s

0

(L1a)(Xz)dWzds

+

∫ t

0

∫ s

0

(L0b)(Xz)dzdWs +

∫ t

0

∫ s

0

∫ z

0

(L0L1b)(Xu)dudWzdWs

+

∫ t

0

∫ s

0

∫ z

0

(L1L1b)(Xu)dWudWzdWs. (2.12)

This is called Ito-Taylor formula, in priciple, one could continue given enough smooth-
ness of a and b, to generate an expansion. The remainder involves multiple stochastic Ito
integrals.

3 Shortened Notations

3.1 Multi-indices

We shall call a row vector

α = (j1, j2, . . . , jl)

where

ji ∈ {0, 1, . . . ,m}

for i ∈ {1, 2, . . . , l} and m = 1, 2, 3, . . ., a multi-index of length

l := l(α) ∈ {1, 2, . . .}

Here m will denote the number of components of the Wiener process under consideration.
For completeness we denote by v the multi-index of length zero, that is with

l(v) := 0

Thus, for example,

l((1, 0)) = 2 and l((1, 0, 1)) = 3.

In addition, we shall write n(α) for the number of components of a multi-index which are
equal to 0 . For example,

n((1, 0, 1)) = 1, n((0, 1, 0)) = 2, n((0, 0)) = 2.

We denote the set of all multi-indices by M, so

M =
{
(j1, j2, . . . , jl) : ji ∈ {0, 1, . . . ,m}, i ∈ {1, . . . , l}, for l = 1, 2, 3, . . .

}
∪ {v}. (3.13)
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Given α ∈ M with l(α) ≥ 1, we write −α and α− for the multi-index in M obtained by
deleting the first and the last component, respectively, of α. Thus

−(1, 0) = (0),(1, 0)− = (1)

−(0, 1, 1) = (1, 1),(0, 1, 1)− = (0, 1).

Finally, for any two multi-indices α = (j1, j2, . . . , jk) and ᾱ = (j̄1, j̄2, . . . , j̄l) we introduce
an operation ∗ on M by

α ∗ ᾱ = (j1, j2, . . . , jk, j̄1, j̄2, . . . , j̄l)

the multi-index formed by adjoining the two given multi-indices. We shall call this the
concatenation operation. For example, for α = (0, 1, 2) and ᾱ = (1, 3) we have

α ∗ ᾱ = (0, 1, 2, 1, 3) and ᾱ ∗ α = (1, 3, 0, 1, 2)

3.2 Multiple Ito Integrals

Given integrable condition, we can recursively define,

Iα[f(·)]ρ,τ :=


f(τ) : l = 0∫ τ

ρ
Iα−[f(·)]ρ,sds : l ≥ 1 and jl = 0∫ τ

ρ
Iα−[f(·)]ρ,sdW j1

s : l ≥ 1 and jl ≥ 1,

where l(α) = l, for example,

I0[f ]0,t =

∫ t

0

f(s)ds;

I1[f ]0,t =

∫ t

0

f(s)dWs;

I(0,1)[f ]0,t =

∫ t

0

∫ s2

0

f(s1)ds1 dWs2 (3.14)

and Ij = Ij[1]. Then Ito-Taylor expansion up to two layer integrals is:

Xt = X0 + aI0 + bI1 + (aa′ +
1

2
b2a′′)I(0,0)

+[ab′ +
1

2
b2b′′]I(0,1) + ba′I(1,0) + bb′I(1,1) + · · · , (3.15)

dots mean higher layered integrals.
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Some Calculations

• For convenience, we write

Iα,t = Iα[1]0,t, W 0
t = t.

• Let j1, . . . , jl ∈ {0, 1, . . . ,m} and α = (j1, . . . , jl) ∈ M where l = 1, 2, 3, . . . Then

W j
t Iα,t =

l∑
i=0

I(j1,...,ji,j,ji+1,...,jl),t +
l∑

i=1

1{ji=j ̸=0}I(j1,...,ji−1,0,ji+1,...,jl),t (3.16)

for all t ≥ 0.

Sketch of Proof: By Ito formula of function like f(X, Y ) = XY ,

W j
t Iα,t = I(j),tIα,t =

∫ t

0

Iα,sdI(j),s +

∫ t

0

I(j),sIα−,sdW
jl
s + 1{jl=j ̸=0}

∫ t

0

Iα−,sds (3.17)

= I(j1,...,jl,j),t +

∫ l

0

W j
s Iα−,sdW

jl
s + 1{jl=j ̸=0}I(j1,...,jl−1,0),t (3.18)

Now, consider W j
s Iα−,s by induction.

• (Corollary) Suppose that α = (j1, . . . , jl) with j1 = · · · = jl = j ∈ {0,, . . . ,m} where
l ≥ 2. Then for t ≥ 0

Iα,t =

{
1
l!
tl : j = 0

1
l

(
W j

t Iα−,t − tI(α−)−,t

)
: j ≥ 1

Sketch of Proof: The case j = 0 follows from the usual deterministic integration rule.
For j ∈ {1, . . . ,m} the relation (3.16) gives

tI(α−)−,t =
l−2∑
i=0

I(j1,...,ji,0,ji+1,...,jl−2),t and

W j
t Iα−,t = lIα,t +

l−1∑
i=1

I(j1,...,ji−1,0,ji+1,...,jl−1),t

Examples:

I(j,j),t =
1

2!

(
I2(j),t − t

)
(3.19)

I(j,j,j),t =
1

3!

(
I3(j),t − 3tI(j),t

)
(3.20)

I(j,j,j,j),t =
1

4!

(
I4(j),t − 6tI2(j),t + 3t2

)
(3.21)
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4 Coefficient Functions

We shall write the diffusion operator for the Ito equation in d dimension defined with m
dimension Wiener process as

L0 =
∂

∂t
+

d∑
k=1

ak
∂

∂xk
+

1

2

d∑
k,l=1

m∑
j=1

bk,jbl,j
∂2

∂xk∂xl

and for j ∈ {1, . . . ,m} introduce the operator

Lj =
d∑

k=1

bk,j
∂

∂xk

For each α = (j1, . . . , jl) and function f (which has enough regularity), we define recursively
the Ito coefficient function

fα =

{
f : l = 0
Lj1f−α : l ≥ 1

Rmk: it is in the opposite order with the multiple Ito integral. But both of them are
natural and intuitive to understand.

If the function f is not explicitly stated we shall always take it to be the identity
function f(t, x) ≡ x. For example, in the 1-dimensional case d = m = 1 for f(t, x) ≡ x we
have

f(0) = a, f(1) = b, f(1,1) = bb′

and

f(0,1) = ab′ +
1

2
b2b′′

Here the prime ′ denotes the ordinary or partial derivative with respect to the x variable,
depending on whether or not the function being differentiated depends only on x or on
both t and x.

Now note

f(0) = a, f(j1) = bj1

f(0,0) = aa′ + σa′′, f(0,j1) = abj1′ + σbj1′′

f(j1,0) = bj1a′, f(j1,j2) = bj1bj2′
(4.22)

given

σ =
1

2

m∑
j=1

(
bj
)2

(4.23)
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Combining we have,

Xt = X0 + aI0 + bI1 + (aa′ +
1

2
b2a′′)I(0,0)

+[ab′ +
1

2
b2b′′]I(0,1) + ba′I(1,0) + bb′I(1,1) + · · · (4.24)

= X0 + f(0)I0 + f(1)I1 + f(0,0)I(0,0)

+f(0,1)I(0,1) + f(1,1)I(1,0) + f(1,1)I(1,1) + · · · , (4.25)
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