Lecture 7: Weak convergence, Numerical Stability

Zhongjian Wang*

Abstract
Weak consistency implies weak convergence; numerical stability.

1 Weak Consistency: Definition and Examples

A discrete SDE approximation Y?°(t) is called converging weakly to X (t) at t = T if:
lim |E(g(X(T))) = E(g(Y"(T)))] =0, (1.1)

for any g € C, C a class of smooth test functions. One example of C is all polynomials,
then (1.1) is same as convergence of all moments of solutions. As before, discrete times
O=to<ti<teo<---<t, < ---<tn=T,A, =t,1 —t,, 0 = maxA,.
Convergence is order g > 0 if:

|B(g(X(1))) — E(g(Y*(T))| < Cd”, (1.2)
for small 6.

Later we will see that Euler method is weakly convergent of order f = 1, while it is order
1/2 strong convergent (pathwise).

The discrete approximation is weakly consistent if
Y6 o Y(S

same as in strong consistency, and:

) < ¢(8) = 0, (1.3)

2

E

1
(0 = P = Pl
< ¢(6) — 0. (1.4)
for all fixed Y? =y, n=0,1,2,---.
For Euler, weak consistency holds. Moreover, some modified Euler like:

Yiir = Yo 4 altn, V) Ay 4 b(tn, Y, (AR)Y2, (1.5)

where &, independent two point r.v., P(§, = £1) = 1/2, is weakly convergent, not strongly
convergent.
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2 Consistency implies Convergence
Consider the autonomous SDE:

dX; = a(Xy)dt + b(Xy)dWy, (2.6)
a, b, smooth, with polynomial growth.

Theorem 2.1 Consider equidistant time weakly consistent discrete approzimation Y, of

(2.6) with Y°(0) = Xq so that:

E(max |Y,; ") < K (1 + E(|Xo[*)), (2.7)
forq=1,2,---, and:
E([Yy = Y% < e(0)An, ¢(8) = 0(0), (2.8)
for anyn =0,1,2,---. Then Y’ converges weakly to X (t).
Sketch of Proof: Write Y (t) = Y?(t).
Use fact:
u(s, ) = E(g(Xr)|Xs = x), (2.9)
solves backward equation:
2
ug + Lu = ug + auy, + 5 Uaw = 0, (2.10)
and:
u(T,x) = g(x). (2.11)
Denote by X" solution of:
t t
X" = a:+/ a(X,f’x)dr—i—/ b(X %)W, (2.12)
Ito formula and (2.10) give:
E(u(tni1, Xi7") = u(tn, 2)|An) =0, (2.13)

By equs (2.9)-(2.11), write:

H = |E(g(Y(T)) = E(¢(X(T)))|
|

= [E()  ultnir, Yosr) — ultn, Yo))|. (2.14)



By (2.13):

0 = 1B it Vi) — ult, Vi)
—(utnrr, Xp2) = wtn, X))
= |E(Z[ (tnt1, Yor1) — w(tnsr, Ya)
—(ultnsr, Xey") = wltnrn, Y2))))l

Taylor expand in x:

= |E(Z U [(Yo1 — (an:;n - Y,)]
1
+5 uxw[(ym—l - Yn)2 - (th,Yn - Yn)2]

2 tnt1

(lYn—f—l _Yn|3+ |th o Yn|3))|

n+1

Uy, Uy evaluated at (41, Y).

(2.15)

Higher Moments Estimate of SDE (augmented, Theorem 4.5.4 in KL’s book)
Suppose that conditions in lecture 5 hold and that

E (X" < 00
for some integer n > 1. Then the solution X, satisfies
E(|1X7) < (1+ B (|X ™)) eS¢t
and

E (1X; — X4o|™) < D (1+ E (1X4 ")) (¢ — to)" eS¢

H < C ZE | [E((Yni1 — Ya) — (th,Yn —Y,)[4,)]

tny1
b sl B (Vi — Y = (X~ Y,)214,)
+o<53/2+51/2 c(9))
c8 3 BB =0 A —aft,, Vo) )
: ,
(Vo1 — Yn)?
)

IN

B2 B L4 — R, R

O(8*2 + 6"/ c(9))
C Y 6/c(0) + 057 + 6'2\/c(5))
O(\/c(8) + 6%+ \/c(6)/6) — 0.
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IN +  +

(2.16)



3 Numerical Stability and A-Stability

A discrete approximation Y of Ito SDE is stable if for two initial data Y, and Y:

lim  sup P(|Y? —Y?|>e€) =0, (3.17)
[Y§ Y |—0¢te[0,T)

for each € > 0, § € (0,dp), dg > 0.

For the Euler method, following the same estimates as in uniqueness proof, we derive:

t
Zi= sup B(Y? - Vo) < ¥ - ¥iP+C [ Zas (3.18)
0

s€[0,t]
Gronwall inequality implies:
Zy <|Yg = Y[ (1 +eAT), (3.19)

hence (3.17). Stability only refers to closeness of solutions on a finite interval [0, 7] for
small enough time step 9.
Asymptotic stability extends stability to T" = oo as:

lim  lim P(sup [V —Y?| >¢)=0. (3.20)
IYO(S_)?O(s [—0 T—o0 t€[0,T

To help determine asymptotic stability, consider the test eqn:
dX; = AXydt + dWy, (3.21)
where Re()\) < 0. Applying a discretization method to (3.21) gives:
Yo = GNO)Y, + Z,, (3.22)

Z, are r.v independent of A\, and Y,,.
Region of absolute stability is:

{\d € C: Re(N) <0, |[G(N)| <1}, (3.23)
Ezxample 1: Euler method:
Yor1 =Y (14 X))+ Wy — W, (3.24)

|Yn+1 - Y/n-i-1| < |1 + )‘5||Yn - Y/n|

absolute-stable if:
|1+ M| <1, Re()\) < 0.

Ezxample 2: Implicit Euler method:

Yn+1 - Yn + a(tn—l—la Yn+l)5 + b(tna Yn)(Wn-l—l - Wn)7 (325)
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takes the form on eqn (3.21):
Yn+1 = Yn + Yn+1)\5 + Wn+1 - Wna

SO:
|Yn+1 - Yn+1| < |1 - >‘5|_1|Yn - Yn|>

absolute-stable for all Re(\) < 0, any step size ¢, i.e. absolute stable in the left half plane,
which is called A-stable.
For cases of multiplicative noise, we applied fully implicit Euler method:

Yopr = Yo+ altnir, Yar1)d + b(tnyr, Vo) (Wais — Wa), (3.26)
applied to
dX; = AN Xydt + X, dWy,
yields:
e 1
Fa=Yo kl;[O 1= X — (Wit — Wi)’ (3:27)

is not suitable for strong approximation as the denominator can be zero. It is fine for weak
approximation with iid two point process Uy replacing Wy 1 — Wi

P(U, = +V5) = 1/2.



4 Project III (due Feb 15 before lecture)

II11. Consider the SDE:

dXt = CLXtdt + bXtth,

a, b constants, and its Euler scheme. Find the order(s) of convergence of the third and
fourth moments of the approximate solutions.

IT12. Consider the initial boundary value problem of:

up = 0.025 Uy, + e$@u(1 —u), z € [0,15],

¢(x,w) is the stationary O-U process with N(0,1) at x = 0, covariance E(£(2)£(0)) = e **
as in Project II. Use backward-time-central-space scheme with a proper h, k to discretize
the SPDE, h < 0.01. Boundary conditions are: u(¢,0) = 1, u(¢,15) = 0; and initial
condition: u(0,x) = x[o1j(x). Evolve numerically to ¢ = 20.

(1) Plot a sample solution u for ¢t = 0,4,8,12,16,20. (You should see some propogating
front profile)

(2) Generate N > 1000 samples. For each ensemble solution u(-, -;w), we define a random
process, X (t,w) such that, u(X (t,w),t;w) = 1/2. Plot a histogram of 7, (w) = X (20, w)/20.

(3) Calculate ¢ = E(n;), and
¢ =2+/0.025 x E(ef),

the latter being the naive estimate of random front velocity. Which average speed is larger
?

I113. The SDE:

dXt = aXtdt + bXtth,
a, b constants, has exact solution:

2

b
X = Xoexp{(a — E)t + bW, }.

Let Xo = 1, a = 1.5, b = 1. Solve the SDE for ¢ € [0,1] numerically by Euler
and Milstein (search Milstein method on Wikipedia) schemes, with time step § = 27",
n=3,4,5,6.

(1) Plot a sample solution computed with Euler and Milstein, together with exact
solution, for the above d’s;

(2) generate 20,000 samples for each value of §, and compute the absolute error € =
€(d) = BE(]X (1) — Y°(1)]). Plot € vs. 6,5 =27, n = 3,4,5,6. Conclude on the order of
accuracy of Euler and Milstein.



