Lecture 6: Euler Approximation

Zhongjian Wang*

Abstract

Backward and forward representation, strong and weak convergence of Euler ap-
proximation.

1 Euler Method: Order of Convergence

SDE:
dXt = Cl(t, Xt)dt + b(t, Xt>th, te (O, T], (11)

with initial value Xy at ¢t = 0. Discrete times 0 = tg < t;1 <t < - - < t, < --- <ty =T.
Denote A, =t 11 — t,, d = max A,,.
Euler approximation:

Yn+1 = Yn + a(tna Yn)An + b<tna Yn)(th_H - th)a (12)

with Yy = Xo.

Y, is A, measurable.

Connecting the adjacent discrete values Y, by straight lines form a continuous function
Y'(t). Pathwise measure of approximation is:

e = E(IX(T) = Y(T))), (1.3)

reduces to deterministic absolute error at ¢ = T if noise is absent. In actual computation,
suppose we have N solutions Yy (T') from N realizations of BM, then € is approximated by:

‘= %Z X (T) — Yi(T)|. (1.4)

It is an amusing fact that € ~ O(§'/2) in the stochastic case while ¢ ~ O(§) in the deter-
ministic case. This is analyzed below.
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1.1 Strong Convergence/Consistency
Strong Convergence if:

lim E(|X (T) — Y5(T)|) = 0. (1.5)

6—0

Strong Convergence with order v > 0:
E(X(T) = Y5(T)]) < €07, (1.6)

for any 0 € [0, oo}, dp > 0.
Strong Consistency of Discrete Approzimation:

i, — Y
E(Wbﬁi—M&J—M%KMﬁgdﬁaa (1.7)

and:

n

1
B i = ¥ = B = YS1A0) = e VAW, P
< ¢(5) = 0. (1.8)
for all fixed Y2 =y, n=0,1,2,---.
For Euler, strong consistency holds with ¢(d) = 0.

1.2 Convergence

Consider the autonomous SDE:
dXt = CL(Xt)dt + b(Xt)th, (19)

Theorem 1.1 A strongly consistent equidistant time discrete approxvimation Y2 of (1.9)

with Y°(0) = Xy converges strongly to X. In particular, Euler method converges strongly
with order 1/2.

Sketch of Proof:

Z(t) = sup E(|Y;) — X(s)]),

s€[0,¢]

ns = max{n : t, < s}.

ng—1

Z2(t) = swp Bl Y (Y, - V) - / Ca(X,)ds - / (X)W,

s€[0,t] =0



ns—1

Cy sup | Ef] Z (Yo = Y An,) = a(Y;)A,)[]

s€[0,t]

IN

ns—1

+ Ef Z wi = Yy = BV = YA = (V) AW, P

+ y/tns X,) dr|?] +Ey/ X,) dW,[?]

+ y/ X,)ds] +E|/ X, )aw, )} (1.10)

by strong consistency and Lipschitz condition:

Z(t) < Cy /t Z(s)ds + C5(6 + ¢(9)), (1.11)

the last term of (1.10) contributes O(J).
Gronwall inequality:

Z(t) < Cu(6 + c(9)), (1.12)

or:

E(Y*(T) - X(T)]) < C3/3 + (), (1.13)
strong convergence. For Euler, ¢(d) =0, v = 1/2.

2 Backward and Forward Representations
Let X(t) be a diffusion process (solution of SDE) with drift a(¢, x), diffusion b(¢, x):
dXt = Gdt + deta

consider the conditional expectation (s < t):

E(f(Xy)|Xs =x) /f p(s,z;t,y) dy, (2.14)

where p(s,x;t,y) is the transition probability density function from (s,z) to (¢,y). As a
function of (s, x), p satisfies the backward equation:

1
ps + 562(5, Z)Pzz + a(s,x)p, = 0. (2.15)
Hence u(s,z) = E(f(X;)|Xs = x) solves (2.15) with final condition u(t,z) = f(z).
For the forward representation, consider the Autonomous case, a = a(x), b = b(x).
Then p(s,t;z,y) = p(t — s;2,y), ps = —pr,
1
P = §b2(x)pm + a(x)py, t > s, (2.16)
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p(t;x,y) = 6(y — ), as t — 0+. The transition probability density becomes fundamental
solution of parabolic equation (2.16). As a function of (¢, x),

olt, ) = B(F(X)IX, = 7) = / F(9) p(t — si2) dy, (2.17)

solves: ]
Uy = §b2(x>vxm + a(fﬁ)vx, (218)

with initial data v(s,z) = f(z).
Feynman-Kac Formula Eq. (2.17) is a probabilistic representation formula of PDE
(2.18). It can be generalized to include a lower order (potential, V') term as in Eqn:

1
wy, = §b2(x)wm + a(z)w, + V(z)w, t >0, (2.19)

initial data: w(0,2) = f(x). Then,

wlt,a) = B |expf [ vixenanss ik (2:20)

Rmk: If the diffusion b(x) = 0, F-K formula reduces to a solution formula of first order
hyperbolic eqn by the method of characteristics.
To derive (2.20), let:

i =  [exp [ vexenansc ).

a linear bounded (non-negative) operator on the space of bounded continuous functions.
Note:

¢
exp{/ X)ds} =1 +/ V(Xs)ds + o(t),
0
as t — 0+. We have for any f(x) in the domain of T}:

M - %(E[f(Xt)efOtV(XS)ds]—f(x))
1

= LB - )+ TR [ Ve

= (V*(2) far/2 + alx) fo) + V(2) f. (2.21)
We have used (2.16) for the limit of first term.

To generalize F-K to nonautonomous case, we should notice trick in (2.16) no longer
works. Treat t as a parameter,

dX5" = a(th®, X57)ds + (1L, XE7)dW,
dtt = —ds, (2.22)



X" = 2, t§° = t, symmetrically extending a, b: a(—7,2) = a(r,z) etc. View (2.22) as
a diffusion process on (t,x) € R? with time s. Eqs (2.22) are autonomous, and define a
Markov process (t4%, X1 P). We then apply F-K (2.20). The result is:

w(t,x) = BEf(X}") exp{ {/t V(t—s, X")ds|}, (2.23)
0
solves eqn:
wy = %bQ(t, L)Wy + alt, x)w, + V (¢, z)w, (2.24)
w(0,z) = f(x).

All results generalize to higher space dimensions.

3 Weak Consistency: Definition and Examples

A discrete SDE approximation Y?(t) is called converging weakly to X (t) at t = T if:
lim |E(g(X(T))) = E(g(Y*(1)))] =0, (3.25)

for any g € C, C a class of smooth test functions. One example of C is all polynomials,
then (3.25) is same as convergence of all moments of solutions. As before, discrete times
O=to<ti<to<---<t, < ---<tn=T,A, =t,1 —t,, 0 = maxA,.

Convergence is order g > 0 if:

|E(g(X(T))) — E(g(Y(T)))| < C6”, (3.26)

for small 0.
Later we will see that Euler method is weakly convergent of order § = 1, while it is order
1/2 strong convergent (pathwise).

The discrete approximation is weakly consistent if

VAT ?
E ‘E (%mtn) —a(t,, Y))| | <) =0, (3.27)
same as in strong consistency, and:
1 2
BB (50 - v, ) - P01
< ¢(6) = 0. (3.28)

for all fixed Y? =y, n=0,1,2,---.
For Euler, weak consistency holds. Moreover, some modified Fuler like:

Yiir = Yo 4 altn, V) Ay 4 b(tn, Y, (AR)Y2, (3.29)

where &, independent two point r.v., P(§, = +1) = 1/2, is weakly convergent, not strongly
convergent.



4 Consistency implies Convergence

Consider the autonomous SDE:
dXt = G(Xt)dt + b(Xt)th,

a, b, smooth, with polynomial growth.

(4.30)

Theorem 4.1 Consider equidistant time weakly consistent discrete approzimation Y, of

(4.80) with Y°(0) = Xq so that:
E(max |V, ") < K(1+ E(|Xo*)),
forq=1,2,---, and:
BV = Y71%) < c(8)An,  c(8) = o9),

for anyn =0,1,2,---. Then Y’ converges weakly to X (t).
Sketch of Proof: Write Y (t) = Y°(t).
Use fact:

u(s, r) = E(g(Xr)|Xs = ),
solves backward equation:

b2
uS+Lu:u5—|—aux+§um =0,

and:
u(T,z) = g(x).
Denote by X;** solution of:

¢ ¢
Xf’gc:x—i—/ a(X,f’x)dr—l—/ b(X*)dW,.

A key observation by Ito formula and (4.34) :

E(ultni1, X,175) — u(tn, 2)| Ay) =0,

By eqns (4.33)-(4.35), write:
H = |E(g(Y(T))) — E(9(X(T)))

(4.31)

(4.32)

(4.33)

(4.34)

(4.35)

(4.36)

(4.37)

(4.38)



By (4.37):

H = |E(Z[ (tns1, Yogr) — ultn, Ya)
~(ultnsr, Xp730) = ulte, Xi))))]
- ’E(Z[ (tns1, Yosr) — u(tnsr, Yo)
—(u (tn+17Xt:j") — U(tni1, Ya))])l
Taylor expand in x:

|E(Z Up [(Vn1 — (XZ::?L - Y,)]

1
+5 uxm[(Yn—I—l -Y ) (th o Yn)Q]

2 tnt1

FO(IX " = Yal®) + Yo — Yol

tn+1

Uy, Uy, evaluated at (41, Yn).

(4.39)

Higher Moments Estimate of SDE (augmented, Theorem 4.5.4 in KL’s book)
Suppose that conditions in lecture 5 hold and that

B (|1X,™) < 00
for some integer n > 1. Then the solution X, satisfies
E(1XG]*") < (14 E (|X,[™)) €7
and

B (| X = Xio ™) < D (1+ E (|1X, ™)) (¢ = to)" 77

n+1 ) - (th,Yn - Yn)lAn>

tn+l

H < CZE|U$|

+ |um||E<< ntl — Y, ) (Xttnjn - Yn>2|An)|
+0(53/2 + 0124/c(6))
O3 GE(B(EEE20 4, ~ alty, V)P

v\2
sl ) g, v

O(8*2 + 6"/ c(6))
C Y 6/c(0) + 05 + 6'2,/c(0))
O(\/c(0) + 8%+ 1/c(8)/5) — 0.

IN 4+  + IN

(4.40)



