
Lecture 5: Strong and Weak Solution

Zhongjian Wang∗

Abstract

Strong and Weak Solution of SDE

1 Integral Formulation of SDE

Recall definition of SDE:
dXt = a(t,Xt)dt+ b(t,Xt)dWt, (1.1)

and the corresponding SIE:

Xt = X0 +

∫ t

0

a(t,Xs)ds+

∫ t

0

b(s,Xs)dWs. (1.2)

Strong solution is defined for each BM Wt and its filtration At, each initial data X0,
there is a process Xt, t ≥ 0, with continuous sample path such that Xt is adapted to At,
and a solution of SIE (1.2).
Uniqueness of strong solution: for given initial data X0, there is only one solution to
SIE (1.2)

• in the mean square sense E inf |Xt − X̃t|2dt = 0;

• in the pathwise sense: P (supt∈[0,T ] |Xt − X̃t| > 0) = 0.

Eg. Recall in last lecture when we define vector SDE, we need vector BM Wt whose entries
W 1, W 2. W 1, W 2 share same joint distribution but they are not identical in MS sense or
pathwise sense.

1.1 Sufficient Conditions

Throughout this course, we are expecting only to solve SDE with unique solution. Here we
list three usually assumes condition that sufficiently provides existence and uniqueness.
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(A1) Lipschitz: a, b are measurable in (t, x), Lipschitz in x:

|a(t, x)− a(t, y)| ≤ K|x− y|,
|b(t, x)− b(t, y)| ≤ K|x− y|, (1.3)

for any t ∈ [0, T ], x, y.

(A2) Linear growth bound:

|a(t, x)|2 ≤ K2(1 + |x|2), |b(t, x)|2 ≤ K2(1 + |x|2), (1.4)

for any t ∈ [0, T ], x, y.

(A3) X0 is A0 measurable, E(|X0|2) < ∞.

1.2 Gronwall Inequality

Differential Form: Given interval I = [a, b] on real line, if

u′(t) ≤ β(t)u(t), t ∈ I◦

then u is bounded by :

u(t) ≤ u(a) exp

(∫ t

a

β(s)ds

)
for all t ∈ I.
Integral Form (only works for deterministic integral): If u(t) satisfies:
- (a) If β is non-negative and if u satisfies the integral inequality

u(t) ≤ α(t) +

∫ t

a

β(s)u(s)ds, ∀t ∈ I,

then

u(t) ≤ α(t) +

∫ t

a

α(s)β(s) exp

(∫ t

s

β(r)dr

)
ds, t ∈ I.

- (b) If, in addition, the function α is non-decreasing, then

u(t) ≤ α(t) exp

(∫ t

a

β(s)ds

)
, t ∈ I.

-(c) If, in addition, α, β are constant, then

u(t) ≤ α exp
(
β(t− a)

)

2



1.3 Uniqueness

Suppose Xt, Yt are two solutions of SIE with same initial data (X0 = Y0), Zt = Xt − Yt:

Zt =

∫ t

0

(a(s,Xs)− a(s, Ys))ds

+

∫ t

0

(b(s,Xs)− b(s, Ys))dWs. (1.5)

By Cauchy-Schwarz, mean square property of Ito integral, (A1):

E(|Zt|2) ≤ 2E[|
∫ t

0

(a(s,Xs)− a(s, Ys))ds|2]

+ 2E[|
∫ t

0

(b(s,Xs)− b(s, Ys))dWs|2]

≤ 2T

∫ t

0

E[|a(s,Xs)− a(s, Ys)|2]ds

+2

∫ t

0

E[|b(s,Xs)− b(s, Ys)|2]ds

≤ L

∫ t

0

E[|Zs|2]ds, (1.6)

L = 2(T + 1)K2. Gronwall implies E(|Zt|2) = 0, uniqueness in the mean square sense.
With more work, one can show that pathwise uniqueness also holds.

1.3.1 If E|X0|2 is unbounded

Let Xt and X̃t be two such solutions of SIE on [0, T ] with, almost surely, continuous sample
paths. Since they may not have finite second moments, we shall use the following
truncation procedure: for N > 0 and t ∈ [0, T ] we define

I
(N)
t (ω) =

{
1 : |Xu(ω)| ,

∣∣∣X̃u(ω)
∣∣∣ ≤ N for 0 ≤ u ≤ t

0 : otherwise

Obviously I
(N)
t is At -measurable and I

(N)
t = I

(N)
t I

(N)
s for 0 ≤ s ≤ t. Consequently the

integrals in the following expression are meaningful:

Z
(N)
t = I

(N)
t

∫ t

0

I(N)
s

(
a (s,Xs)− a

(
s, X̃s

))
ds (1.7)

+I
(N)
t

∫ t

0

I(N)
s

(
b (s,Xs)− b

(
s, X̃s

))
dWs

3



where Z
(N)
t = I

(N)
t

(
Xt − X̃t

)
. From the Lipschitz condition we then have

max
{∣∣∣I(N)

s

(
a (s,Xs)− a

(
s, X̃s

))∣∣∣ , ∣∣∣I(N)
s

(
b (s,Xs)− b

(
s, X̃s

))∣∣∣}
≤ KI(N)

s

∣∣∣Xs − X̃s

∣∣∣ ≤ 2KN (1.8)

for 0 ≤ s ≤ t. Thus the second order moments exist for Z
(N)
t and the two integrals in (1.7).

Using the inequality (a+ b)2 ≤ 2 (a2 + b2), the Cauchy-Schwarz inequality, we obtain from

E

(∣∣∣Z(N)
t

∣∣∣2) ≤2E

(∣∣∣∣∫ t

0

I(N)
s

(
a (s,Xs)− a

(
s, X̃s

))
ds

∣∣∣∣2
)

+ 2E

(
|
∫ t

0

I(N)
s

(
b (s,Xs)− b

(
s, X̃s

)
dWs

∣∣∣2)
≤2T

∫ t

t0

E

(∣∣∣I(N)
s

(
a (s,Xs)− a

(
s, X̃s

))∣∣∣2) ds

+ 2

∫ t

0

E

(∣∣∣I(N)
s

(
b (s,Xs)− b

(
s, X̃s

))∣∣∣2) ds

which we combine with (1.8) to get

E

(∣∣∣Z(N)
t

∣∣∣2) ≤ L

∫ t

0

E
(∣∣Z(N)

s

∣∣2) ds
for t ∈ [0, T ] where L = 2 (T + 1)K2. We then apply the Gronwall inequality to conclude
that

E

(∣∣∣Z(N)
t

∣∣∣2) = E

(∣∣∣I(N)
t

(
Xt − X̃t

)∣∣∣2) = 0

and hence that I
(N)
t Xt = I

(N)
t X̃t, w.p.1, for each t ∈ [0, T ] . Note,

P
(
I
(N)
t ̸≡ 1∀t ∈ [0, T ]

)
≤ P

(
sup

0≤t≤T
|Xt| > N

)
+ P

(
sup

0≤t≤T

∣∣∣X̃t

∣∣∣ > N

)
.

Since the sample paths are continuous almost surely they are bounded almost surely, we
can make the probability on the right arbitrarily small by taking N sufficiently large. This

means that P
(
Xt ̸= X̃t

)
= 0 for each t ∈ [0, T ].

And then P
(
Xt ̸= X̃t : t ∈ D

)
= 0 for any countably dense subset D of [0, T ] . As

the solutions are continuous and coincide on a countably dense subset of [0, T ], they must
coincide, almost surely, on the entire interval [0, T ] .
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1.4 Existence

Picard iteration:

Xn+1
t = X0 +

∫ t

0

a(s,Xn
s )ds+

∫ t

0

b(s,Xn
s )dWs, (1.9)

Xn
t all measurable in At, X

0
t = X0. Second moment estimate:

E[|Xn+1
t |2] ≤ 3E[|X0|2] + 3E[|

∫ t

0

a(s,Xn
s )ds|2]

+ 3E[|
∫ t

0

b(s,Ws)dWs|2]

≤ 3E[|X0|2] + 3TE[

∫ t

0

|a(s,Xn
s )|2ds]

+3E[

∫ t

0

|b(s,Xn
s )|2ds]

≤ 3E[|X0|2] + 3(T + 1)K2E[

∫ t

0

1 + |Xn
s |2] (1.10)

implying supt∈[0,T ] E[|Xn
t |2] ≤ C0 < ∞, for all n. (by induction)

As in uniqueness:

E(|Xn+1
t −Xn

t |2) ≤ L

∫ t

0

E(|Xn
s −Xn−1

s |2)ds (1.11)

iterating:

E(|Xn+1
t −Xn

t |2) ≤
Ln

(n− 1)!

∫ t

0

(t− s)n−1E[|X1
s −X0

s |2]ds. (1.12)

By growth bound (A2):

E[|X1
t −X0

t |2] ≤ L

∫ t

0

(1 + E[|X0
s |2]) ≤ C1 < ∞, (1.13)

then (1.12):
E(|Xn+1

t −Xn
t |2) ≤ C1L

ntn/n!,

or:
sup

t∈[0,T ]

E(|Xn+1
t −Xn

t |2) ≤ C1L
nT n/n!,

implying Xn
t converges in mean square sense for t ∈ [0, T ].

Note: L2
T equipped with,

∥f∥2,T =

√∫ T

0

E (f(t, ·)2) dt (1.14)

is a Banach space space.
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The limit is a solution of SIE (some work needed to achieve path-wise convergence and
then pass the limit, see KL’s book p133).

Prior estimate If E[|X0|2n] < ∞,

E[|Xt|2n] ≤ (1 + E[|X0|2n])eCt. (1.15)

Eg of Non existence Consider SDE we discuss last lecture:

dYt = −1

2
e−2Ytdt+ e−YtdWt, (1.16)

has unique solution:
Yt = ln(Wt + eY0),

valid until time:

T = T (Y0(ω)) = min{t ≥ 0 : Wt(ω) + eY0(ω) = 0.}

Growth condition (A2) is not satisfied.

1.5 Generalized results

1.5.1 Lipschitz Condition

Lipschitz condition in b can be replaced by Yamada condition:

|b(t, x)− b(t, y)| ≤ ρ(|x− y|), ρ(0) = 0,

∫
0+

ρ−2(u)du = +∞. (1.17)

One can take ρ(u) = uq, q ∈ [1/2, 1].
Example:

SDE dXt = |Xt|qdWt, X0 = 0, has unique solution if q ∈ [1/2, 1].
But SDE:

dXt =
1

3
X

1/3
t dt+X

2/3
t dWt, (1.18)

with initial data X0 = 0 has nontrivial solution (hence nonuniqueness):

Xt = (Wt/3)
3.

1.5.2 Growth Condition

Growth condition on drift coefficient a can be replaced by:

xa(t, x) ≤ K(1 + |x|2),

allowing a = x− x3.
The idea comes from

1

2

d

dt
x2 = xa(x) = x2 − x4 ≤ x2
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1.6 Stability

If as ϵ → 0:
E[|Xϵ

0 −X0|2] → 0,

sup
|x|≤N

|aϵ(t, x)− a(t, x)| → 0, t ∈ [0, T ], ∀N,

sup
|x|≤N

|bϵ(t, x)− b(t, x)| → 0, t ∈ [0, T ], ∀N,

then (by Gronwall Inequality):

sup
t∈[0,T ]

E[|Xϵ
t −Xt|2] → 0.

Example: Solutions of SDE:

dXϵ
t = a(t,Xϵ

t )dt+ ϵdWt, (1.19)

converge in the mean square sense to those of deterministic ODE: X ′
t = a(t,Xt) with same

initial data.

2 Diffusion Process and Weak Solution

2.1 Strong Solution as a diffusion process

Recall definition of Diffusion process,
Markov process with transition density is called diffusion process if the following
limits exist:
Jump:

lim
t→s+

1

t− s

∫
|y−x|>ϵ

p(s, x; t, y)dy = 0,

Drift:

lim
t→s+

1

t− s

∫
|y−x|≤ϵ

(y − x)p(s, x; t, y)dy = a(s, x),

Diffusion:

lim
t→s+

1

t− s

∫
|y−x|≤ϵ

(y − x)2 p(s, x; t, y)dy = b2(s, x).

Theorem Assume that a and b are continuous and that A1-A3 hold. Then the solution
Xt of (1.1) for any fixed initial value Xt0 is a diffusion process on [t0, T ] with drift a(t, x)
and diffusion coefficient b(t, x).
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2.2 Diffusion process as a Weak Solution

Note as we turn investigate strong solution as a diffusion process, we only verify the tran-
sition density of the distribution.

Given a diffusion process, Y , on [0, T ] with drift a(t, y) and strictly positive diffusion
coefficient b(t, y). Under some assumptions (see Theorem 4.7.1 in K-L’s book), we can show
Yt satisfies some SDE driven by BM.
To show this, we define functions g and ā by

g(t, y) =

∫ y

0

dx

b(t, x)
(2.20)

and

ā(t, z) =

(
∂g

∂t
+ a

∂g

∂y
+

1

2
b2
∂2g

∂y2

)(
t, g−1(t, z)

)
(2.21)

with a and b evaluated at (t, y), where y = g−1(t, z) is the inverse of z = g(t, y) Then we
define a process Zt = g (t, Yt) , which is a diffusion process with drift ā(t, z) and diffusion
coefficient 1.

And the process

W̃t = Zt − Z0 −
∫ t

0

ā (s, Zs) ds (2.22)

which will turn out to be a Wiener process. (Some proof needed here.)
Consequently (2.22) will be equivalent to the stochastic differential equation

dZt = ā (t, Zt) dt+ 1dW̃t

which, by (2.20),(2.21) and Ito’s formula, will imply that Yt is a solution of the stochastic
differential equation

dYt = a (t, Yt) dt+ b (t, Yt) dW̃t.

Example to discuss

1. In vector SDE
dXt = I2dWt

X1, X2 are not identical in path but share same distribution.

2.
dXt = sgnXtdt+ dWt

where sgn x = +1 if x ≥ 0 and −1 if x < 0, only has weak solutions, but no strong
solution for the initial value X0 = 0. In fact, if Xt is such a weak solution for the
Wiener process W , then −Xt is a weak solution for the Wiener process −W . These
solutions have the same probability law, but not the same sample paths.
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