Lecture 4: Solvable SDEs
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Abstract
linear SDEs, O-U, Solutions and Moments, reducible SDEs.

1 Vector Valued Ito Integral

We write symbolically as a d -dimensional vector stochastic differential
dXt = €tdt + Ftth. (11)

Then for any 0 < s <t < T, which we interpret componentwise as

Xk Xk = /t eFdu + i/t ERqWi,
s = s
We define a scalar process {Y;,0 <t < T} by
V,=U(tX)=U(t, X}, X},...., X}
Then the stochastic differential for Y; is given by
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Example:  Let X} and X? satisfy the scalar stochastic differentials
dX} = eldt + fldW;}

for i = 1,2 and let U (¢, 21,29) = x129. Then the stochastic differential for the product
process

Y= X/ X7
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depends on whether the Wiener processes W} and W? are independent or dependent. In
the former case the differentials (1.1) can be written as the vector differential

th _ etl I tl 0 th
%Xﬂ‘(&d”()ﬁd w2
and the transformed differential is
dY, = (e,}Xt2 + ethl) dt + fthdeVt1 + fthtlde

In contrast, when two process driven by the same BM, i.e., W}! = W2 = W, the vector

differential for (1.1) is
Xe N _ (e i W,

and there is an extra term f! f2dt in the differential of Y;, which is now

dY, = (e, X} + e; X} + fLf2) dt + (f X} + f7 X)) dW, (1.2)

2 Linear SDEs
General form (scalar):
dXy = (a1 (1) Xy + az(t))dt + (b1 (1) X + ba(t))dWs, (2.3)

with given coeflicients, W, and its associated o-algebra A;. Initial data X, is A;, measur-
able.

Autonomous: if coefficients = consts against time.

Homogeneous: if ay = by = 0:

dXt = a3 (t) Xtdt + bl (t) Xt th, (24)

solution with initial data X;, =1, is called fundamental solution, @, .
Q: what if X;, = ¢ where c is some non-zero constant?
Linear in narrow-sense: if by = 0.

3 Narrow-sense linear SDE (b; = 0)

dX, = (ar(t) X, + az(t))dt + (ba(t))dW, (3.5)

Fundamental solution (ay = by = 0) is:

t
by = el | ai(s)ds).
to
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Using integrating factor idea, one wants to consider d(®;, tloXt), note

dP; . = dexp{— / s)ds} = —ay (t)®;} dt.

now denoting ®,,, = ® for simplicity:

d(@ 2 X)) = [a(O)(@ )X, + (a1 Xy + ag) P 'dt + by® ™ dW,
= aqu_ldt + bgé_lth,

integrating: .

@;tOX Xy + / st0d5+/ ba(s @stodW
or: tot

thcbmo[XtoJr/to Stods+/ by ()4 dW).

3.1 Egl. Langevin equation and O-U

Langevin equation (a, b, constants):

dXt = —G/Xtdt + deta
solution:

t
X, =e "X, —I—b/ at=9) g,
0

Lemma 3.1 The process:
t
V(t)=1b / e~ =) q,
0

1s Gaussian with covariance:

E[V(s)V(t)] = ple”*™ — el p =17/ (2a).

Sketch of proof: Consider s,t > 0. V(t) is an approximation of sum > f(¢;)(W;41 —

(3.6)

(3.7)

(3.8)

(3.9)

W;),

or sum of i.i.d. Gaussian r.v’s, so it remains Gaussian. For a partition ¢;’s of [0, ¢], write:

V(s) ~ bz e T Wiy — W),
[0,5]

V(t) = bz e ) (Wi g — Wy),
[0,¢]
SO:

EV(s)V()] b Y ety — ).

[0,min(¢,s)]
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In the limit:

min(t,s)
EV(s)V(t)] = b26_“(s+t)/ e*7dr.
0

Ast — oo, E(V3(t)) — p, limiting distribution N (0, p). Process V is conditioned to zero at
t = 0. To make it stationary, choose X to be N(0, p) independent of o-algebra generated
by V(t), t > 0.

Lemma 3.2 Langevin solution X (t) in (3.9) with such X, gives O-U with covariance:
—alt—s|
pe .

3.2 Eg2. Moments of SDE Solutions

We can also consider moments of SDE by Ito formula;
first moment m(t) = E(X;) from (2.3) directly:

m/(t) = a1 (t)m(t) + az(t). (3.10)

Deriving another Ito SDE for X?, where dX = (a; X + as)dt + bedW a then taking moment
give equation for P(t) = E(X}?):

P'(t) = 2a; P + 2m(t)aq(t) + b3(t). (3.11)

Similarly higher moments. The solution is called "closed” at each level of moment.

4 General Linear SDE (b # 0)

Using also integrating factor idea, only that fundamental solution of the homogeneous
equation,
dXt = a1 (t)Xtdt + b1 (t)Xtth, (412)

is stochastic.
Changing to Stratonovich form,

1
dXt = ((11 — §b%)Xtdt + lel ©) dVVt,
we find:

[ p— /t [al(s)—%b§<s)1ds+ / by (s)dIV. ). (4.13)

to

here we can remove o as integrand is adapted (deterministic). Now by Ito formula,
_ 1 _ _
d(®, ) = —(ai(t) — Ebf(t))q)t’tlodt — by, AW, (4.14)
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by (1.2)
(@i %) = |~ + 300 )x} oyt

+ ((ar() Xy + as(t)) — —bl( )(b1(1) Xy + ba(1))) @y dt
+ [=0u(1)Pr e Xy + (b () X + ba(1) Bp | AW,
= (a2(t) — bu(t)ba(t)) Py gt + ba(t) Py, AW
integrating and taking @ ,:

t
Xt = q)t,to [Xto +/ (CLQ — blbg)cb;tlods —|—/ bgq);tlodWS].

to to

5 Reducible PDEs

For SDE,
dY; = a(t,Yy)dt + b(t, Y:)dWs,

We are looking for X; = U(t,Y}), such that:
dXe = (a1(t) Xt + aa(t))dt + (b1 (t) Xt + ba(t))dW,.

Ito formula gives:

1
dU = (U + aU, + §b2Uyy)dt + bU, dW;,
matching (5.18), (5.19):
1
(Ut + (lUy + §b2Uyy) = alU + a9,
bU, = bU + bs.

Two equations for U implies a compatibility condition on a and b.
Consider the Autonomous case:

dYy = a(Yy)dt + b(Y;)dWr,

and X; = U(Y;). Eqns (5.20)-(5.21) reduce to (a;, b; consts in time):

1
a(y)U, + §b2(y)Uyy =aU(y) + as,
b(y)Uy = b1U(y) + bs.

If b0, by #0 (5.24) yields:
)
Uly) = Ce"BW — b, /by, B(y) = / ds /b(s).
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Plug (5.25) in (5.23):
1
(01 A(y) + ébf —a1)Ce"BYW = a5 — a1by /by (5.26)
where

A(y) = ay)/b(y) — by/2.
Diff. (5.26), multip. b(y)e "*#®) /by,

1
diff. again:

biA, + (bA,), =0, (5.28)

the compatibility condition on a and b. i.e. (bA,), is proportion to A,.
To sum up:

Uly) = e BW_if by #£ 0,
Uly) = baB(y), if by = 0.
Then sub back to (5.23)-(5.24) to get other constant.

5.1 Example: Nonlinear SDE with local solution

Consider .
dY, = —56_2ytdt + e Y dW,. (5.29)

In this case, A = 0, fully compatible for any b;. Take by =0, by = 1, U = e¥. Substituting
this into (5.23) to find a; = as = 0. Thus X; = €**, and the resulting equation:

dXt = th,

solution:
Xt = Wt + €Yo,

so:
Y, = In(W, + ),

valid until time:
T =T (Yo(w)) = min{t > 0 : Wy(w) + 0@ =0}

The example showed that nonlinear SDE solutions in general exist only for a finite time
dependent on realizations. Like for determinsitic ODEs, we do not expect global existence
of solutions without assumptions on the growth of nonlinearity in the equation.



5.2 Example: random logistic growth model:
dY, =rY (t)(1 =Y (¢t))dt + Y (t)dW(t),
r > 0 constant growth rate, Y (0) = Y. Compatible if by = =1, b =0, a1 =1 —17r, ag = r.
The transform is: X =1/Y. X eqn:
dX(t) = ((1 =r)X(t) +r)dt — X (t)dW (t).

Solutions are:
' exp{(r —1/2)t + W(t)}
Y-10) +r f(f exp{(r — 1/2)t' + W () }dt'

Solutions are global if Y'(0)r > 0.

Y(t) =

6 Project II (due 02/01/22)

IT1. Let X; = f(f f(s,w)dW,, show that eX* is a solution of SDE:

1
dY; = S f*(t,w) Yidt + f(t,w) Y, dW,
and eXi—3Jo f7(@)ds ig o solution of SDE:

dYy = f(t,w) Yy dW;.

I12. Derive the second moment equation for general linear Ito SDE, and find first and
second moments of the Langevin equation.

I13.  Generate the Ornstein-Uhlenbeck process numerically by discretizing the integral
representation:

t
X, =e %X, +2 / e 2= g,
0

with left hand rule (Ito) for a small grid size ds of your choice, for ¢ € [0,1]. Here Xj is
N(0,1) r.v. independent of o-algebra generated by W (t), ¢t > 0. Compute the covariance
E(X;X,) numerically and use that to help determine a choice of ds by comparing with
exact covariance e 2%, Plot a sample path of solution on [0, 1].



