Lecture 15: Weak Taylor Approximation

Zhongjian Wang*

Abstract

Introducing weak schemes based on Ito-Taylor expansion and the convergence

theorem.

1 Weak Euler Scheme

Y1 = Yo + a(Y,)A + b(Y,) AW, (1.1)

with initial data Yy = Xj.

Weak Approximation is for approximating the measure (or moments) related to the Ito
SDE solution X (¢). One could replace AW,, by a simple two-point distributed r.v AW,
with:

1
=5

To study weak convergence of approximation, introduce space H®) for functions of z,
[ € (0,1)U(1,2) U (2,3). H® consists of u(z) such that du is Holder continous with
exponent [ — [I], [I] integral part of [, s an integer < [. Holder norm of a function v(z) is:

[v(2) — v()]
= e

Prob(AW, = +VA)

The HY norm is:
lull = (08l + )~ sup [u®)(2)].

s<l

The convergence of Euler weak approximation is:

Theorem 1.1 Let X(t) be Ito SDE solution over [0,T], a(x), b(z) € HY, and let Y°(t)
be Euler approximation with time step 5. For any function g € H2):

[E(9(X(T))) — E(g(Y*(T))| < K&,
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1/2, if L € (0,1),
x()=<1/(3=1),if Il € (1,2), (1.2)
1, if [ € (2,3),

and K independent of [.

Remark 1.1 If the coefficients a and b are slightly more differentiable than twice, the weak
convergence is first order. When |l = 1, namely, coefficients are Lipschitz, weak convergence
15 order 0.5.

Remark 1.2 In proof of lecture 7, we can only verify c(6) < 6% which yields 0.5 order weak
convergence.

1.1 Convergence of Weak Euler

Let f = f(t,z) be a Holder continuous function of exponent [ in z € R, [/2 in t € [0,T],
such functions form the Holder space H;l). Let Y?(t) be the Euler approximate solution
of Ito SDE solution X (t) starting from same initial data X, = Y. It is assumed to be
interpolated exactly with fixing a and b at grid point, when ¢ is a not grid point. The noise
increment AW satisfies:

E(|AWP) + |E(AW)? — A| < KA?. (1.3)

Lemma 1.1 Suppose drift and diffusion a and b are bounded, then for anyn € (0,1), there
is a positive constant K, such that:

IB(f(s,Y°(5)) = f(.. Y}) < K || £l 0X0, (1.4)

se[0,T],1€[n1)U(1,2)U(2,3), x is defined in (1.2).

ATnS )

Proof: let we(z) = fw(%), the mollifier (w > 0, [wdx = 1), define:

fh,e _ h_l /t-i—h /’ f(mln(u, T), y)we(l‘ _ y)dydU,

then:
sup |f(1,2) = fh(t )| < S () - enin) (L5)
sup 0, f1“(t )| < K| fllg'e™ 7, (1.6)
Sup 0, f (8, 2)| < K f hn R, (L.7)



i =1,2, min with 1 in (1.5) is due to first differencing of left had side; integer derivatives
n (1.6)-(1.7) reduce exponent by 1
We replace f by f and estimate errors.

[B(f(s.Y°(s)) = f(Tu,, Yo )l A7,)
< 25;1:}) |f(tv$) - fhe(tvx”
HE( (s, Y2 (5) = (7., Yo )lAG,) (1.8)

Noticing that Y?(s) is exact interpolation, the second term of (1.8) is estimated by Ito
formula thanks to (1.5)-(1.7), skipping superscript 6 on Y?:

< B[O Y @)+ 5 Yo Y ()

K]

+a(Tay, Yo ) 2 (w, Y (w) | dul Ar,, )|
< KHng)(hmin(flJrl/Q,O) + emin(l72,0))5' (19)

So:

[E(f(s, Y‘s( )) = f (s, Y2)lAS,)

<KHf|| ['0 (hmml/21 +hmm 1+l/20)5)

+ inf (Emm(l ,1) +€m1n(l 20)5)]’
e€(0,1)

l
< K || f[|$6x®

(1.10)
proof is finished.
Proof of Theorem 1.1 Let:
=0 + a(x)0, + %b(m)&m,
there is unique solution of final value problem:
Lov =0, v(T,x) = g(x), (1.11)
such that:
Iolly™ < Klg)*+, (1.12)
and by Ito:

E(0(0, Xo)) = E(u(T, Xr)) = E(9(X1)).



It follows by Ito formula and triangle inequality:

|E(9(X1)) = E(9(Y(T)))]
= [E@(0, X0)) = E(u(T,Y(T)))| = |[E((T,Y(T))) — E(v(0, Yo))|

_ |E(/0 [%b(Yns)vm + a(Yn,)vs + v — Lov](s,Y(s))ds)]
< / E([b(Ya,) — b(Y (5))]vrals, Y (5)))]ds
+ / B([a(Ya,) — a(Y (s)]va(s, Y (5)))]ds

< / BV, )0ra(T Yoy) — b(Y (3))usals, Y (5))| Ay )|
+|E(b(Yns)[Um (Tnm Yns) - vm(s, Y(S))] |A7'ns)| ds

.. refer to similar terms on drift. Note that bv,,, v.., av,, v, all belong to H}l) due to
(1.12). Applying the lemma, we prove the weak convergence theorem of the Euler method.

2 Higher Order Weak Schemes

2.1 Order 2 Weak Schemes

Adding all of the double stochastic integrals from Ito-Taylor expansions gives the order 2
weak scheme:

Yier = Yo+ ad 4 BAW 4 %bb’((AW)Q _A)

1 1
+a'bAZ + §(aa' - §a”bQ)A2

+ab + %b"bz)(AWA —AZ) (2.13)

AZ = fOA Wsds. Here AW and AZ are generated jointly by mapping independent unit
Gaussians U;, i = 1, 2.

1
V3

Simplified weak schemes are constructed by replacing AW by a similarly distributed

1
AW = U VA, AZ = §A3/2(U1 + —Us).



AW, and AZ by %AWA to approximate E(AZAW) = A?%/2:
Yo = Yo+ al +bAW + %bb’((AW)z —A)
+%(a’b +ab' + %b"zﬂ)AVm
+%(aa' + %a"bQ)A2, (2.14)
where ATV satisfies the moment condition:

E(AW) + |[E(AW)?) — A| + |E(AW)Y) — 3A2%] < KA®, (2.15)

One may choose W as N (0,A), or 3-point random variable taking +v/3A with prob
1/6 each, and zero with prob 2/3.

General Multi-dimensional case In the general multi-dimensional case d,m = 1,2, ...
the k th component of the order 2.0 weak Taylor scheme takes the form

Yk

1
=Y+ d" A+ 5Loa’w

- Z {bk’jAWj + Lo I ) + Ljak](jyo)}

j=1
+ 3 LG, Gy (2.16)
J1,J2=1

For weak convergence we can substitute simpler random variables the multiple Ito integrals.
In this way we obtain from (2.16) the following simplified order 2.0 weak Taylor scheme
with £ th component

1
Vi =Y+ ad" A+ 5Loa’fA?
m 1 . . .
b7+ A (L™ + L7a®) $ AW
+Z{ FAA (L 1 Dab)
1 & o .
+ 5 Z I1pkod2 (AW]lAWJQ +thj2>

J1,j2=1

Here the AW for j = 1,2,...,m are independent random variables satisfying (2.15) and
the Vj, j, are independent two-point distributed random variables with

1
P(le,h - iA) = )



for jo=1,...,51 — 1,
Vi = —A
and
Vivga = =Viai
2.2 Order 3 Schemes
Consider d =m =1,

Vi1 = Yo+ aA +bAW + Lal gy + L'al(19) + LIo1) + L0111
—|— LOLOCLI(070’0) —|— LOLla[(OJ,O) + LlLOG,I(LO’(]) —|— LlLla](LLO)
+ L°L%I 01y + LOL'0Ig 11y + L' LI 1 01y + L' L'BI (1 1 1)

By comparing moments, we propose,
Y1 = YotaA + bAW + %le {(AW)2 - A}

+ L'aAZ + %L%A? + LOb{AWA — AZ}

+ é (L°L° + L°L'a + L'L°a) AW A?

+ % (L'L'a + L'L% + LOL'D) {(AW)2 - A} A

+ éLOLOaA3 + éLlle {(AVT/)Q - SA} AW
where AW and AZ are correlated Gaussian random variables with

AW ~ N(0;:A), AZ~N (o; éA?’)

and covariance

E(AWAZ) = %A?

3 General Rule and Convergence

In general, a weak order g =1, 2, 3,--- scheme needs all of the multiple Ito integrals from
the Ito-Taylor expansion in the set I's = {a : I(a) < }. Here [ is the length of the index
a. Note that is different from the strong scheme index set A, which also depends on the
number of zeros in the index n(«).



Theorem 3.1 Let Y° be a time discrete approzimation of an autonomous Ito process X

corresponding to a time discretization (T)s, such that all moments of the initial value X
exist, that is

E (\XO\’) <

fori=1,2,..., and such that Y converges weakly with order 3 to Xq as 6 — 0 for some
fized B =1.0,2.0,.... Assume that a(z), b(z) are C*P+Y) and all derivatives up to 2(5+1)
have polynomial growth in large x. In addition, suppose that for each p = 1,2,... there

exist constants K < oo and r € {1,2,...}, which do not depend on §, such that for each
qge{l,...,p}

E ( max |V A0> <K (1 + |YO‘5}2’">

0<n<nrp

and E <|Yj+1 — B ATn> <K (1 + MaXo<hen |Y,§\2’"> (Tst — 1) forn = 0,1, ... ,nr—
1, and such that

l l

E(TI(ir=vim) =TI X /2 (o ¥) L | | As,

h=1 h=1 \ a€ls\{v}

<K (1 + max \Y,f]”) 6 (Tpi1 — o) (3.17)

0<k<nr

foralln=0,1,...,np0 — 1 and (p1,...,p) €{1,...,d}}, where l =1,... 23+ 1 and Y°P»
denotes the py th component of Y°. Then the time discrete approximation Y° converges
weakly with order $ as 0 — 0 to the Ito process X at time T.

A straight forward corollary follows,

Corollary 3.1 Let X(t) be an autonomous Ito SDE solution over [0, T]. Let Y?° be solution
of a weak scheme of order = 1, 2, 3,---, with exact Brownian increment. Then for any
function g € C?B+Y) whose derivatives up to 2(3 + 1) have polynomial growth in large =,

|E(g(X(T))) = E(g(Y*(T)))] < K407,
K, independent of 9.

Note, left hand side of (3.17) is zero with exact Brownian increment.



