Physics-Informed Inference Time Scaling via Simulation-Calibrated Scientific Machine Learning

Yiping Lu

Joint work with Zexi Fan (PKU), Yan Sun (Gatech), Shihao Yang (Gatech)

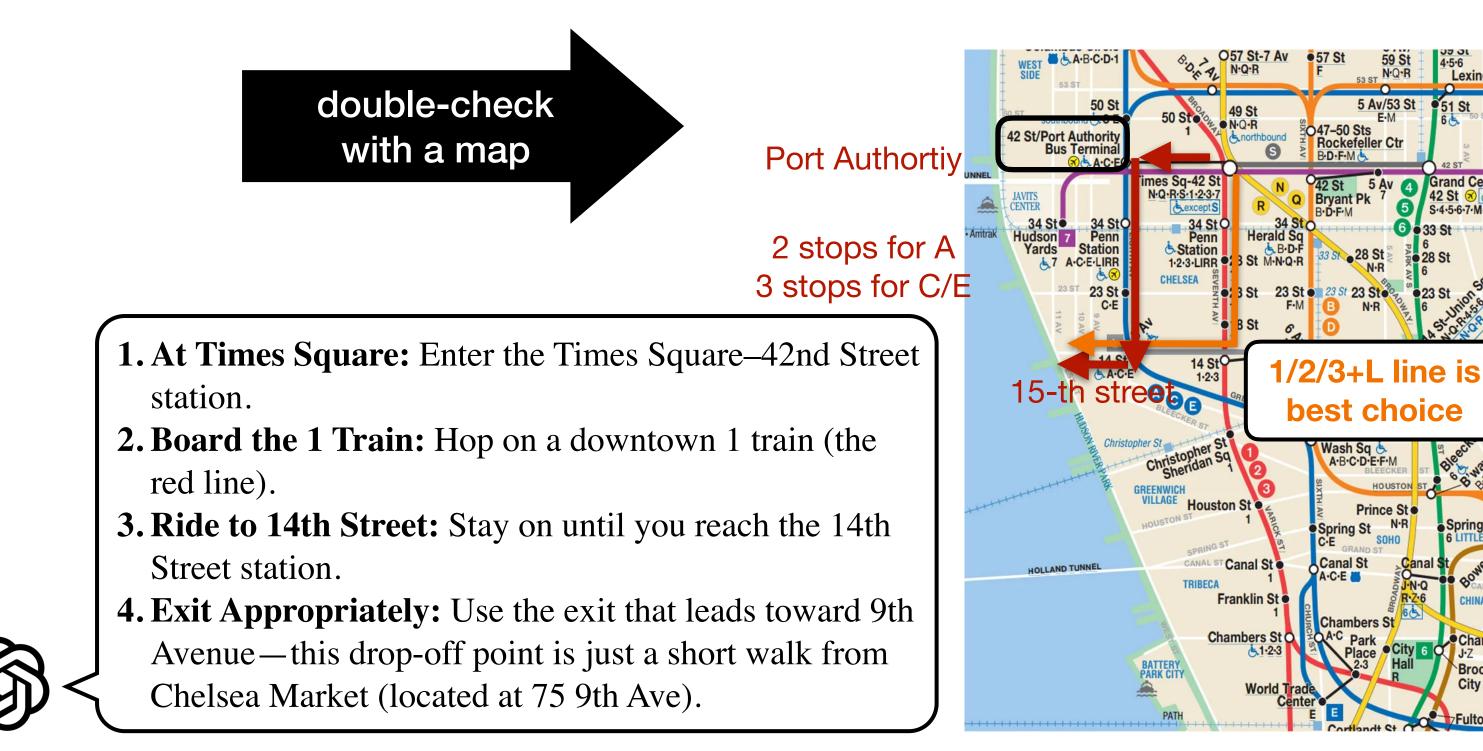
Northwestern ENGINEERING

Consider How you use ChatGPT...

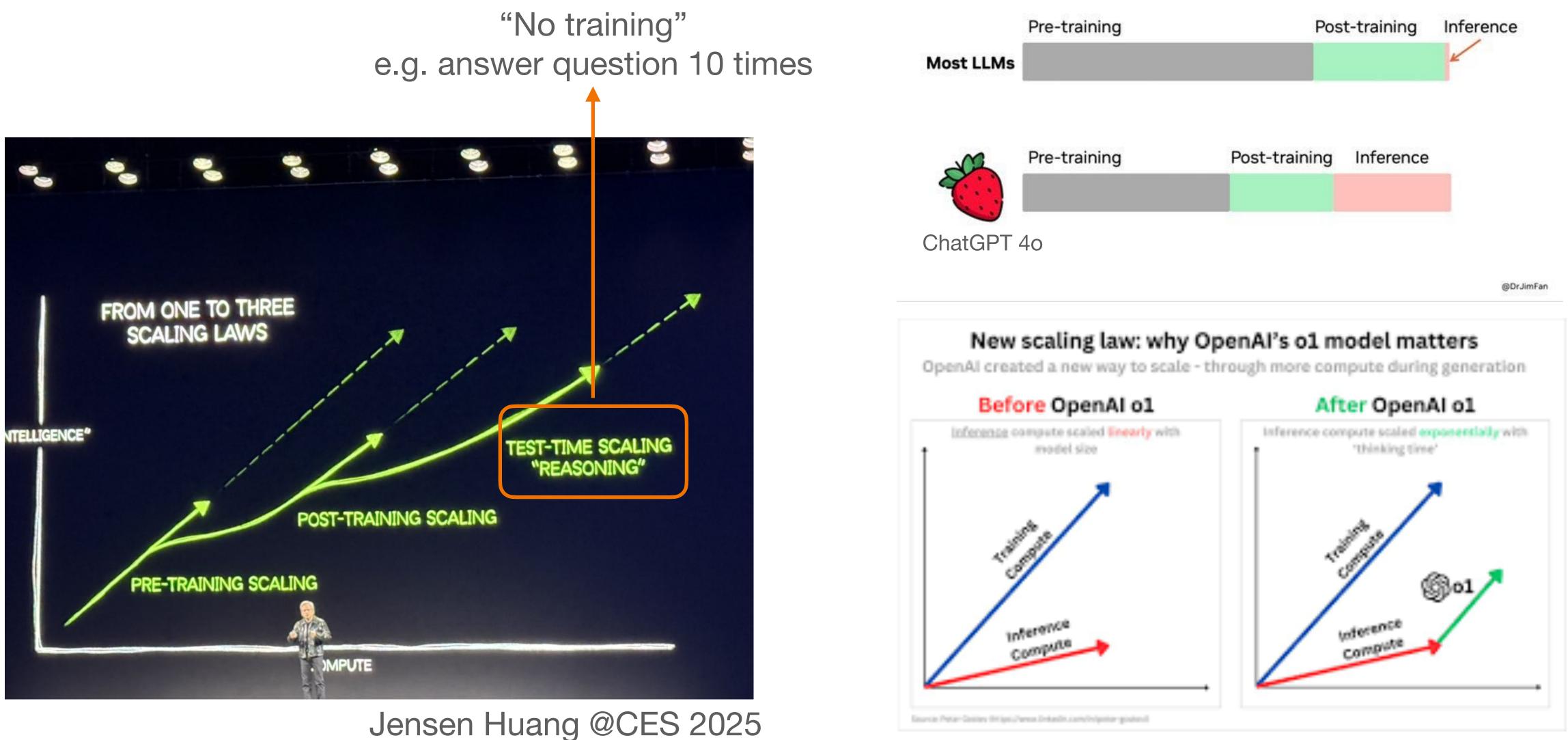
What is the most efficient route from Times Square to Chelsea Market that minimizes walking?

Option 1: Subway

- **1. Walk to a Nearby Subway Entrance:** Head to the Times Sq-42nd Street station.
- **2. Board the E Train:** Catch an E train heading downtown (toward World Trade Center).
- **3. Ride to 8th Avenue–14th Street Station:** Get off at this station (roughly 4 stops).
- **4. Walk to Chelsea Market:** Exit the station and walk east on 14th Street for a few blocks until you reach Chelsea Market at 75 9th Avenue.



Inference Time Scaling Law



How can we perform Inference-Time Scaling for With trustworthy garuntee Scientific Machine Learning?

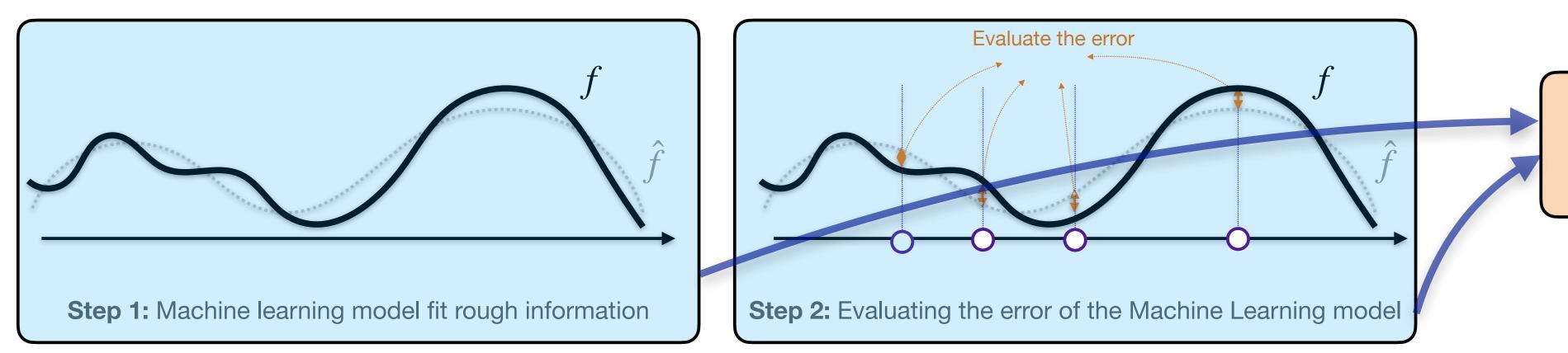
don't fine-tune/retrain/add a new surrogate model

How can we perform Inference-Time Scaling for With trustworthy garuntee Scientific Machine Learning?

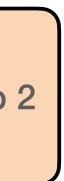
"Physics-informed"

Idea: Debiasing using Feedback Information! Hybrid Scientific Computing and Machine Learning

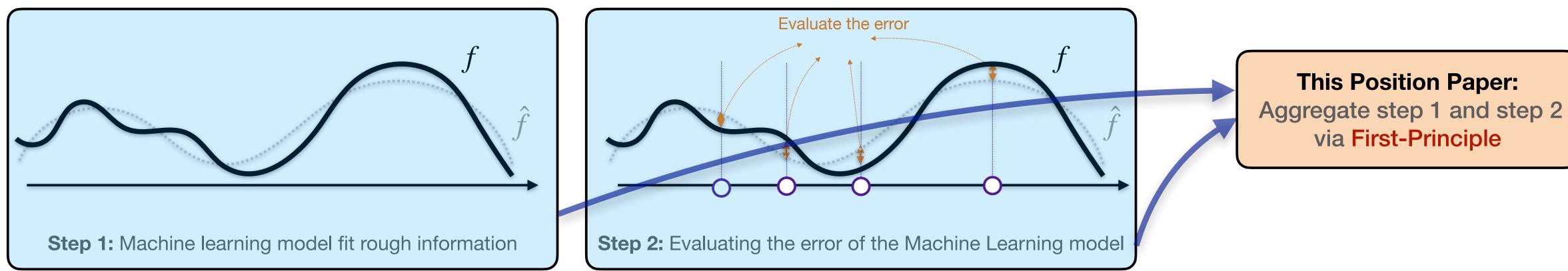
Physics-Informed Inference Time Scaling



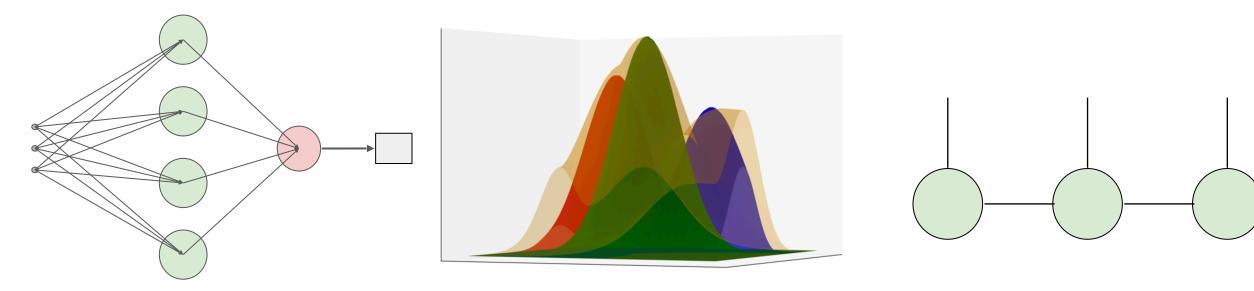
This Position Paper: Aggregate step 1 and step 2 via First-Principle



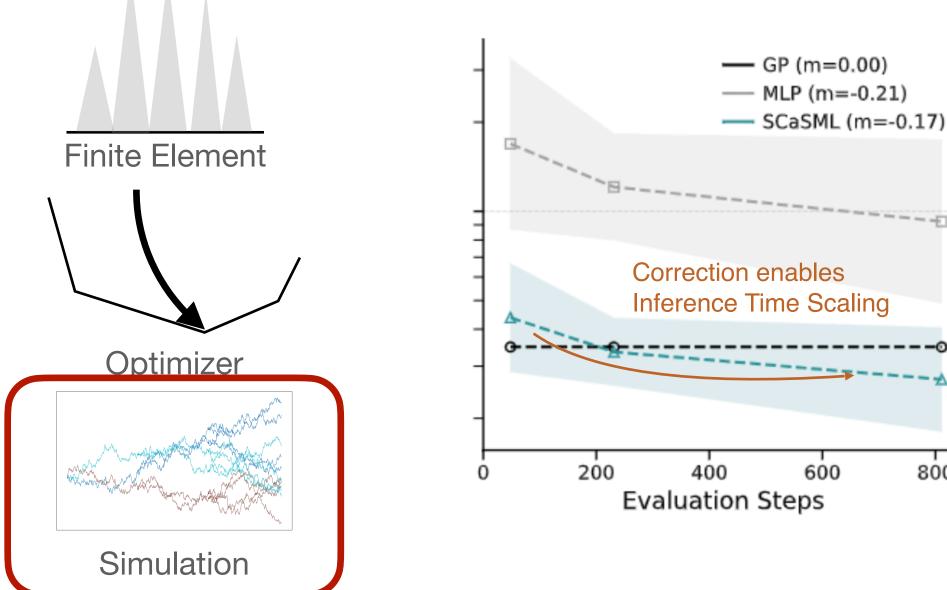
Physics-Informed Inference Time Scaling

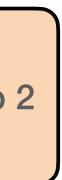


Step 1. Train a Surrogate (ML) Model



Step 2. Correct with a Trustworthy Solver





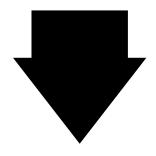
8Ô0

The Toy Example

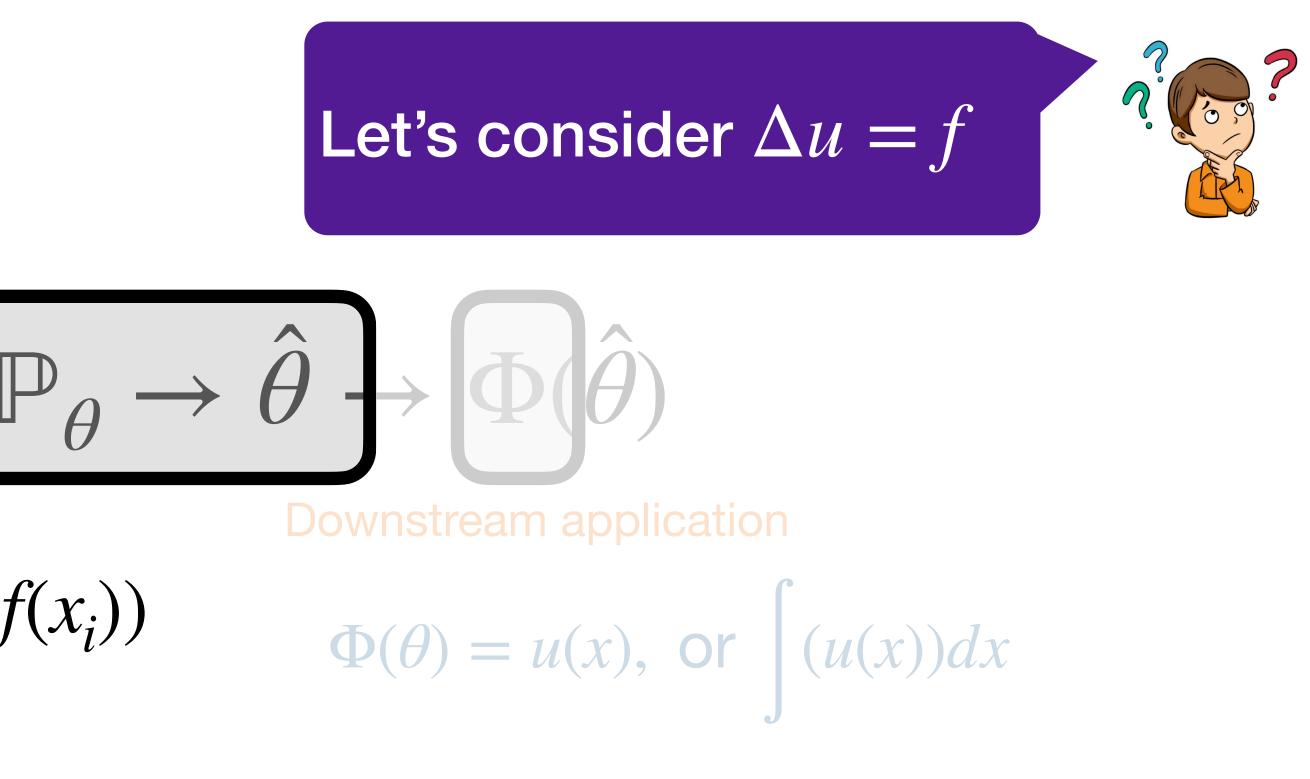
$$\{X_1, \cdots, X_n\} \sim \mathbb{F}$$

Scientific Machine Learning

$$\theta = u, \quad X_i = (x_i, f)$$



FEM/PINN/DGM/Tensor/Sparse Grid/...: $\hat{\theta} = \hat{u}$

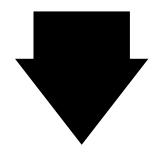


The Toy Example

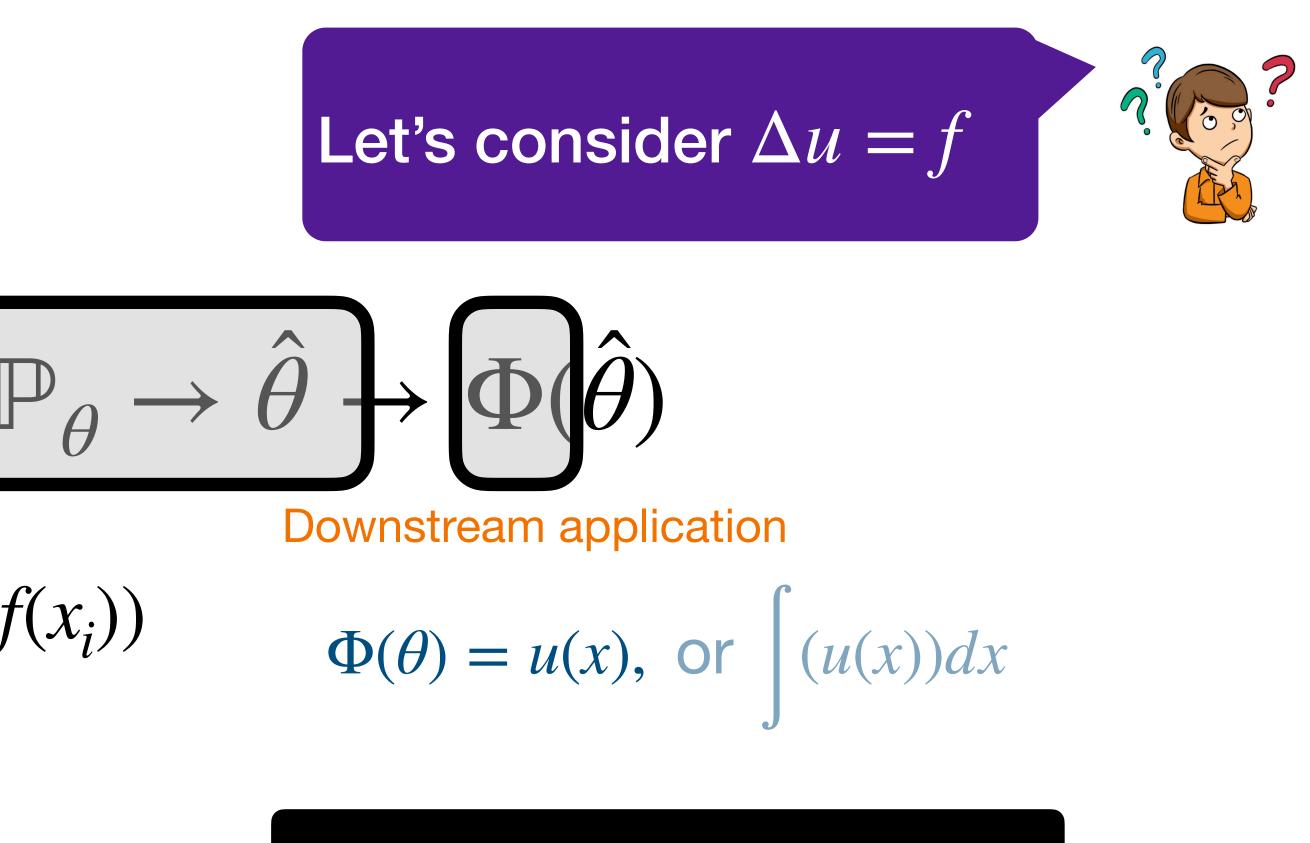
$$\{X_1, \cdots, X_n\} \sim \mathbb{F}$$

Scientific Machine Learning

$$\theta = u, \quad X_i = (x_i, f)$$



FEM/PINN/DGM/Tensor/Sparse Grid/...: $\hat{\theta} = \hat{u}$



What is $\Phi(\theta) - \Phi(\hat{\theta}) = u(x) - \hat{u}(x)$?

 $\Phi(\hat{\theta}) = \hat{u}(x)$

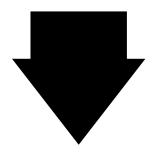
The Toy Example

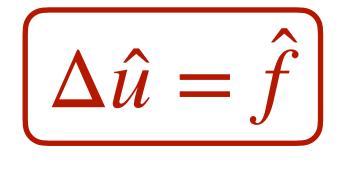
$$\{X_1, \cdots, X_n\} \sim \mathbb{F}$$

Scientific Machine Learning

$$\left[\Delta u = f\right]$$

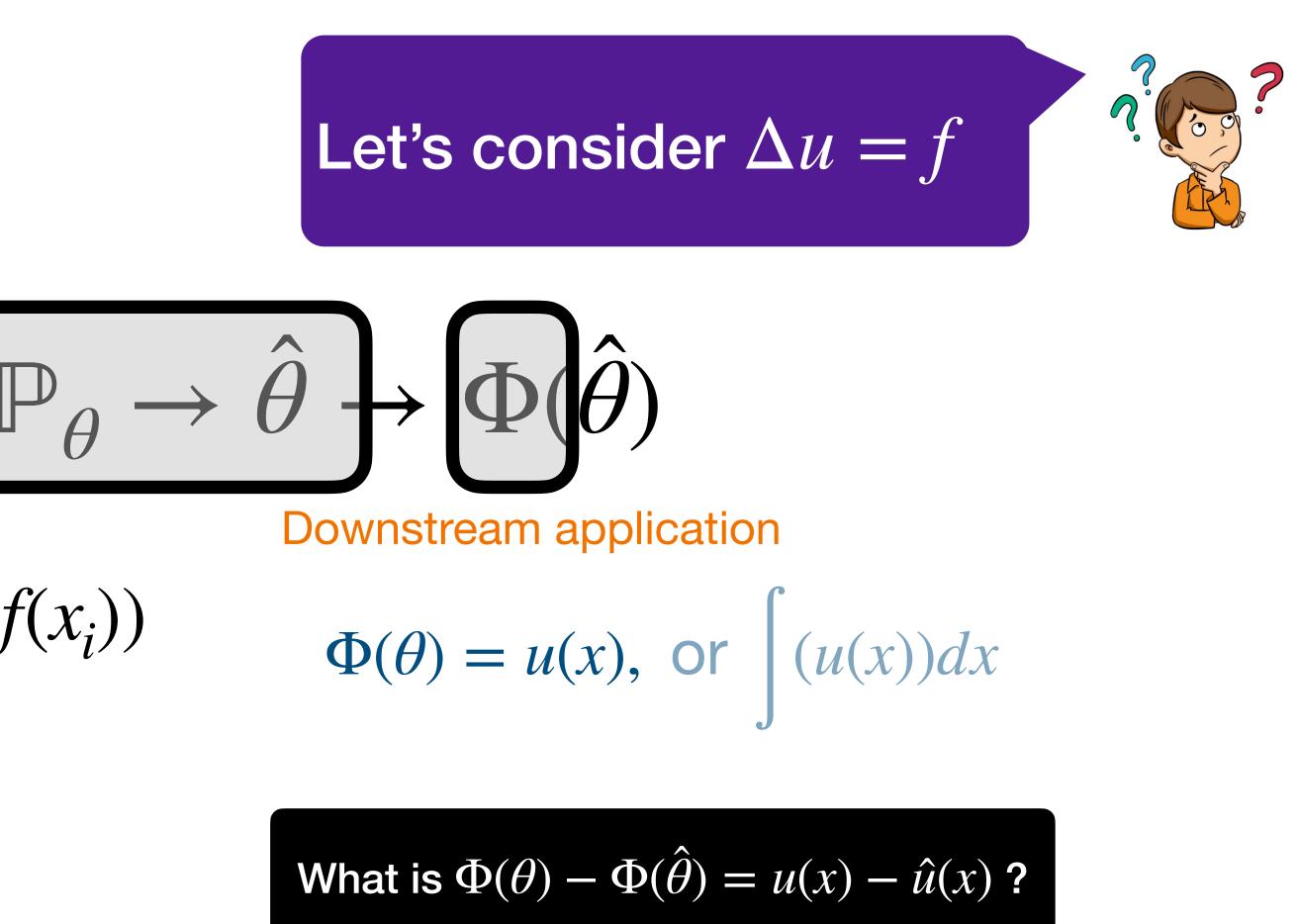
$$\theta = u, \quad X_i = (x_i, f)$$





FEM/PINN/DGM/Tensor/Sparse Grid/...: $\hat{\theta} = \hat{u}$

$$\Delta(u - \hat{u}) = f - \hat{f}$$



$$\Phi(\hat{\theta}) = \hat{u}(x)$$

$$(u - \hat{u})(x) = \mathbb{E}\left[(f - \hat{f})(X_t)dt\right]$$

Works for Semi-linear PDE

 ∂U $\frac{\partial U}{\partial t}(x,t) + \Delta U(x,t) + f(U(x,t)) = 0$ Keeps the structure to enable brownian motion simulation

Can you do simulation for nonlinear equation?

2

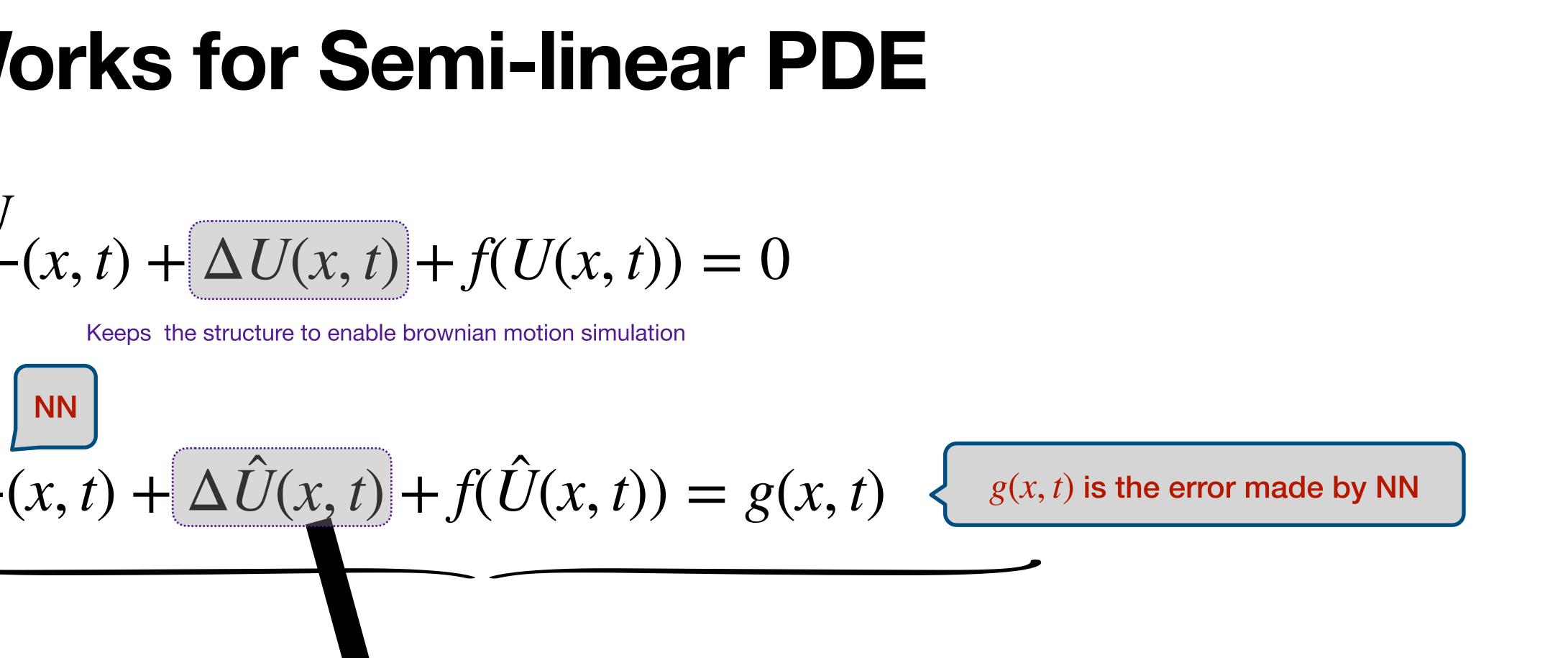
Δ is linear!

Works for Semi-linear PDE

 $\frac{\partial U}{\partial t}(x,t) + \Delta U(x,t) + f(U(x,t)) = 0$ Keeps the structure to enable brownian motion simulation NN $\frac{\partial U}{\partial t}(x,t) + \Delta \hat{U}(x,t) + f(\hat{U}(x,t)) = g(x,t) \quad \left\{ \begin{array}{c} g(x,t) \text{ is the error made by NN} \\ g(x,t) = g(x,t) \end{array} \right\}$

Works for Semi-linear PDE

 ∂U $\frac{\partial U(x,t)}{\partial t} + \Delta U(x,t) + f(U(x,t)) = 0$ Keeps the structure to enable brownian motion simulation NN Subtract two equations Keeps the linear structure $\frac{\partial (U - \hat{U})}{\partial t}(x, t) + \left(\Delta (U - \hat{U})(x, t))\right) + f(t, \hat{U}(t, t))$



Closed with respect to $U - \hat{U}$ for we know \hat{U}

$$(x,t) + U(x,t) - \hat{U}(x,t)) - f(t,\hat{U}(x,t)) = g(x,t).$$

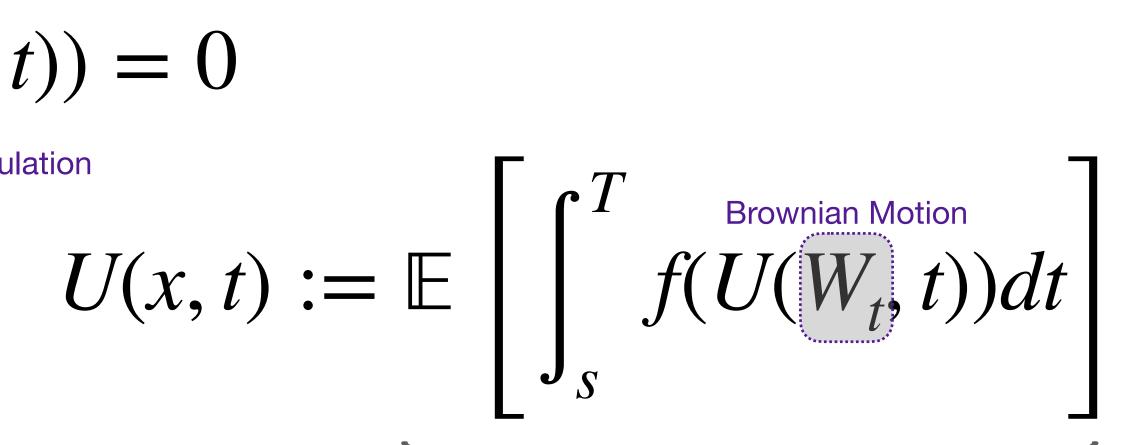
 $G(t, (U - \hat{U})(x, t))$

How to simulate a Semi-linear PDE MultiLevel Picard Iteration

$\frac{\partial U}{\partial t}(x,t) + \Delta U(x,t) + f(U(x,t)) = 0$

Keeps the structure to enable brownian motion simulation

Feyman-Kac



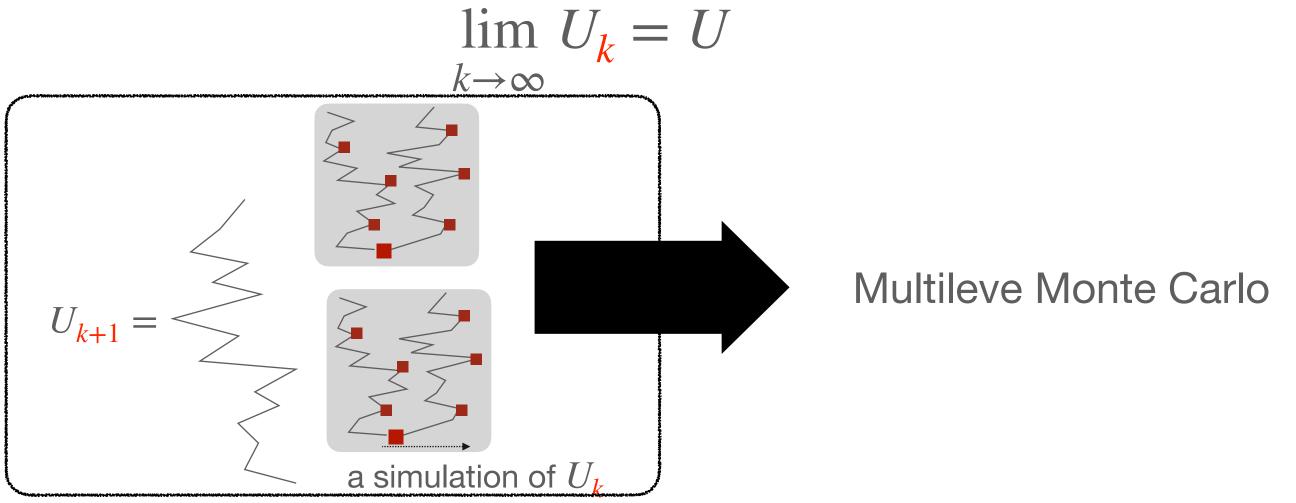
hard to simulate for we don't know U

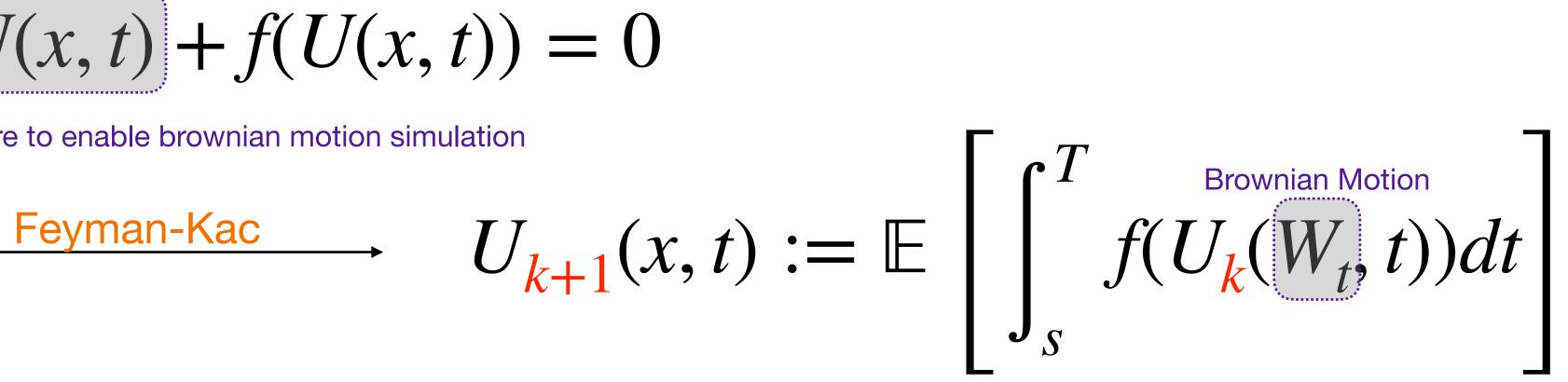
How to simulate a Semi-linear PDE MultiLevel Picard Iteration

$\frac{\partial U}{\partial t}(x,t) + \Delta U(x,t) + f(U(x,t)) = 0$

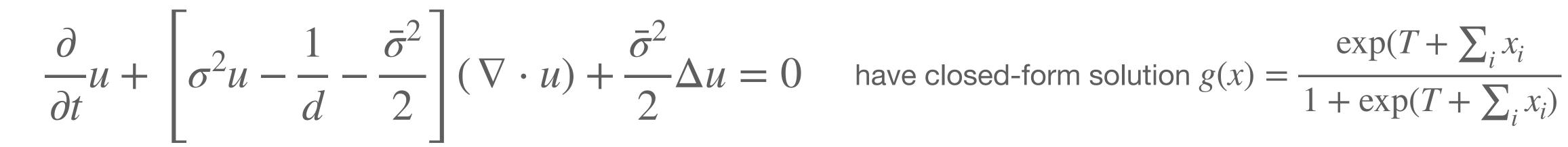
Keeps the structure to enable brownian motion simulation

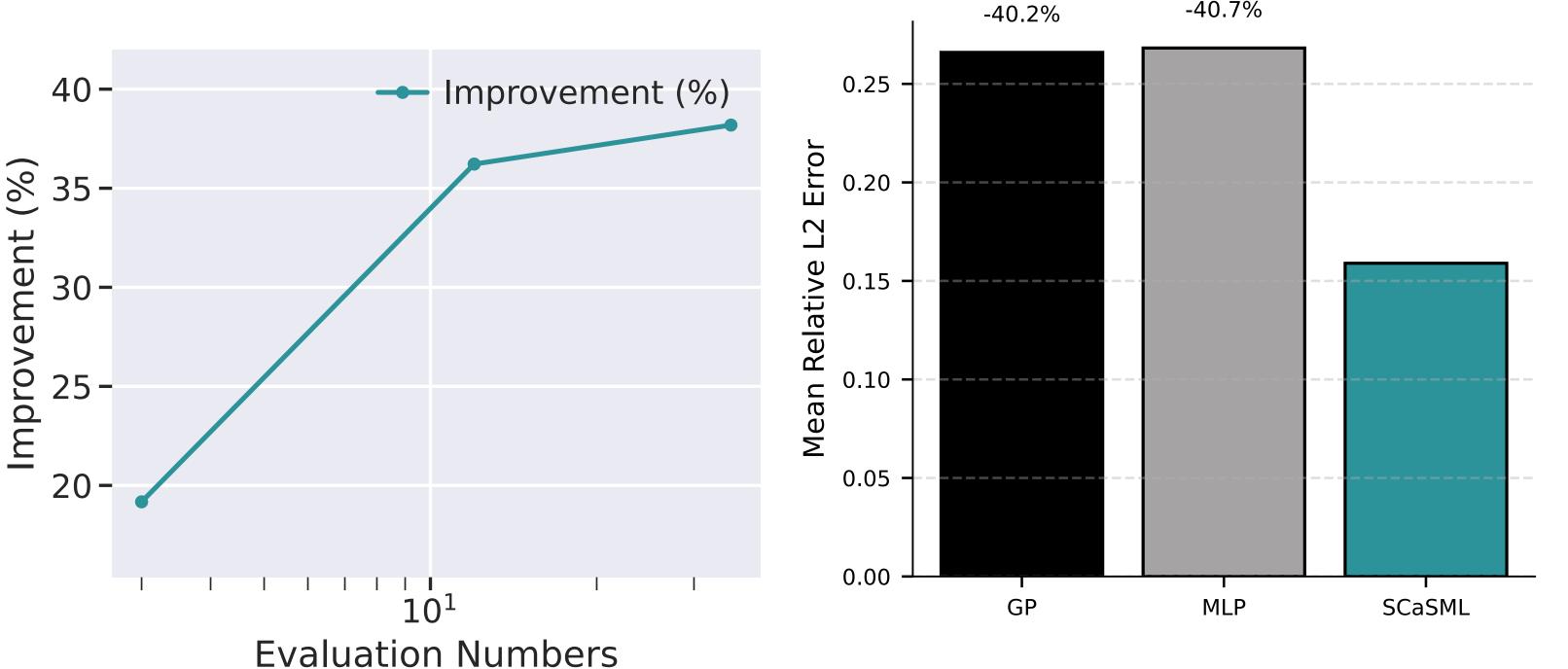
Idea: Using Picard Iteration turn to a Nested Simulation Problem



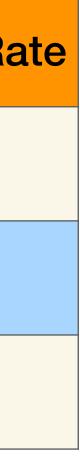


Inference-Time Scaling





Method	Convergence Ra
PINN	$O(n^{-s/d})$
MLP	$O(n^{-1/4})$
ScaSML	$O(n^{-1/4-s/d})$



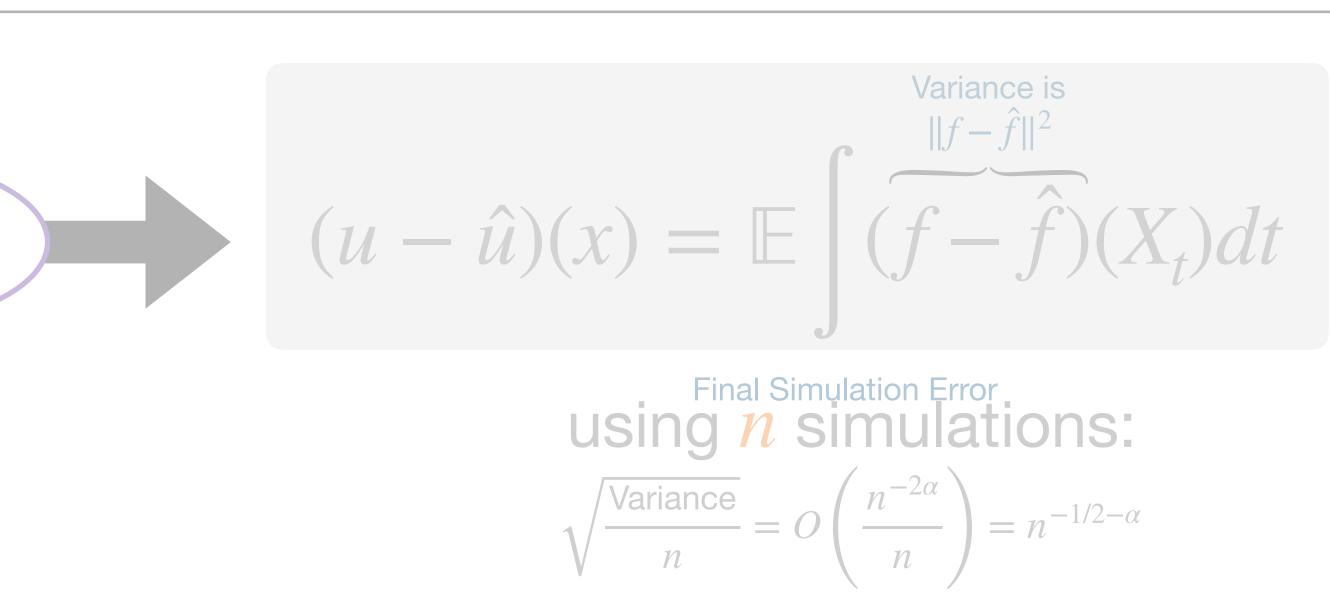
$$\Delta u = f$$
 $\Delta \hat{u} =$ $X_i = (x_i, f(x_i))$ \widehat{u} $X_i = (x_i, f(x_i))$ \widehat{u} $\widehat{u} = (u - \hat{u}) = f - \hat{f}$ $\widehat{u} = (u - \hat{u}) = f - \hat{f}$

using NN as a Control Variate!

ads to Improved Rate

Assume a convergence rate in phase 1 using *n* collocation points: $||f - \hat{f}|| = O(n^{-\alpha})$

PINN/ rse Grid/...: = û



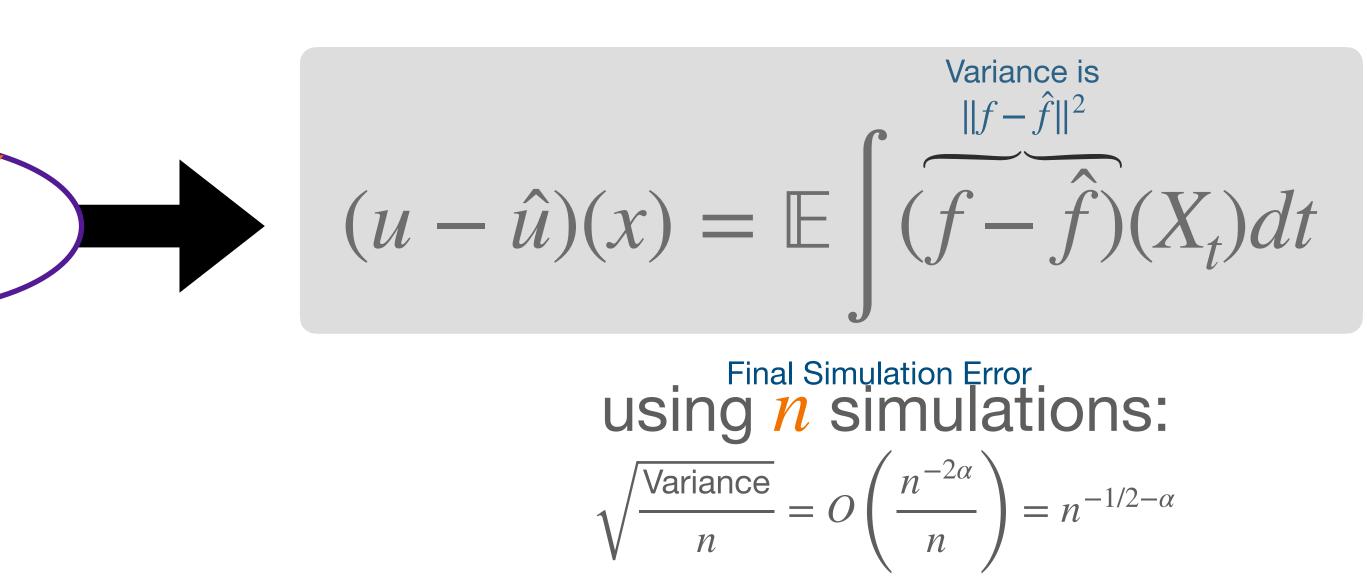
$$\Delta u = f$$
 $\Delta \hat{u} =$ $X_i = (x_i, f(x_i))$ \mathbf{I} $X_i = (x_i, f(x_i))$ \mathbf{I} \mathbf{M} \mathbf{I} $\mathbf{$

using NN as a Control Variate!

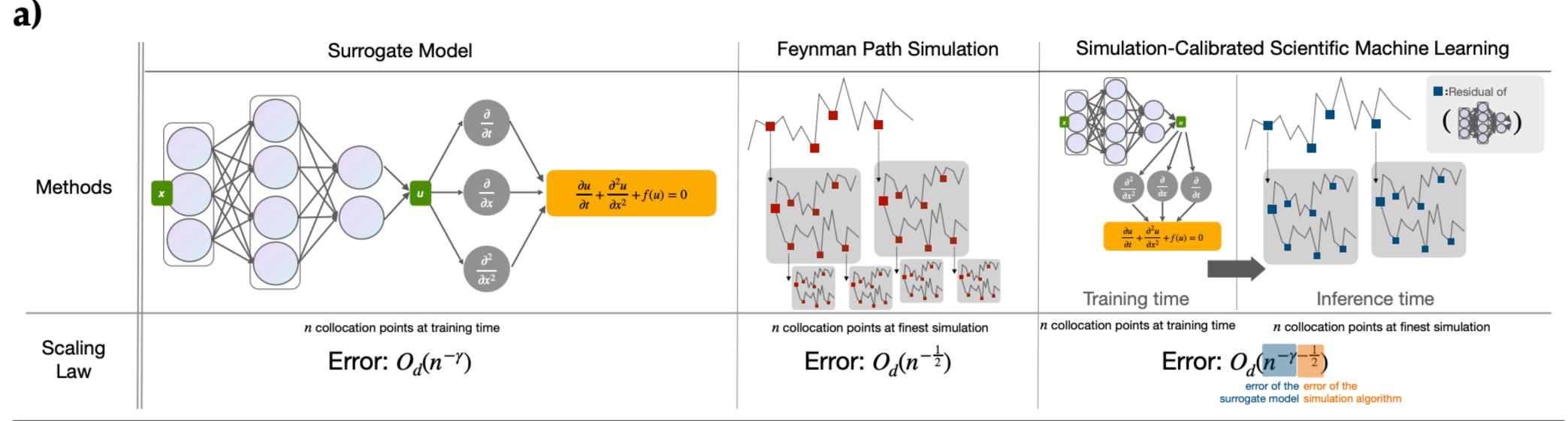
ads to Improved Rate

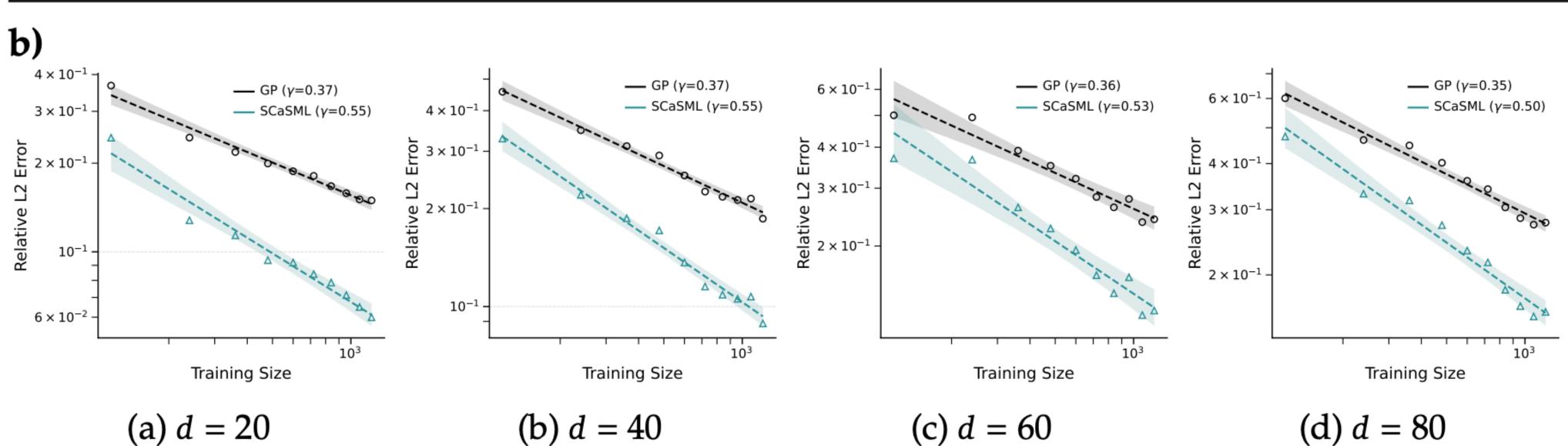
Assume a convergence rate in phase 1 using *n* collocation points: $||f - \hat{f}|| = O(n^{-\alpha})$

PINN/ rse Grid/...: = û



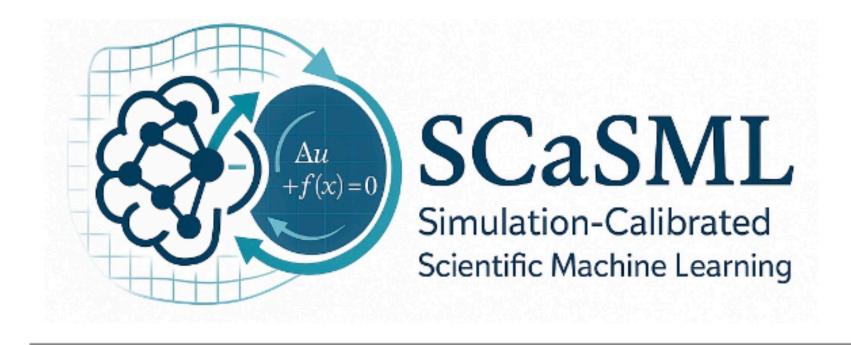
Better Scaling Law





Numerical Results

		Time (s)			Relative L ² Error			L^{∞} Error			L ¹ Error		
		SR	MLP	SCaSML	SR	MLP	SCaSML	SR	MLP	SCaSML	SR	MLP	SCaSML
LCD	10d	2.64	11.24	23.75	5.24E-02	2.27E-01	2.73E-02	2.50E-01	9.06E-01	1.61E-01	3.43E-02	1.67E-01	1.78E-02
	20d	1.14	7.35	17.59	9.09E-02	2.35E-01	4.73E-02	4.52E-01	1.35E+00	3.28E-01	9.47E-02	2.37E-01	4.52E-02
	30d	1.39	7.52	25.33	2.30E-01	2.38E-01	1.84E-01	4.73E+00	1.59E+00	1.49E+00	1.75E-01	2.84E-01	1.91E-01
	60d	1.13	7.76	35.58	3.07E-01	2.39E-01	1.32E-01	3.23E+00	2.05E+00	1.55E+00	5.24E-01	4.07E-01	2.06E-01
	20d	1.15	7.05	13.82	1.17E-02	8.36E-02	3.97E-03	3.16E-02	2.96E-01	2.16E-02	5.37E-03	3.39E-02	1.29E-03
N	40d	1.18	7.49	16.48	3.99E-02	1.04E-01	2.85E-02	8.16E-02	3.57E-01	7.16E-02	1.97E-02	4.36E-02	1.21E-02
VB-PINN	60d	1.19	7.57	19.83	3.97E-02	1.17E-01	2.90E-02	8.10E-02	3.93E-01	7.10E-02	1.95E-02	4.82E-02	1.24E-02
$\mathbf{>}$	80d	1.32	7.48	21.99	6.78E-02	1.19E-01	5.68E-02	1.89E-01	3.35E-01	1.79E-01	3.24E-02	4.73E-02	2.49E-02
VB-GP	20d	1.97	10.66	65.46	1.47E-01	8.32E-02	5.52E-02	3.54E-01	2.22E-01	2.54E-01	7.01E-02	3.50E-02	1.91E-02
	40d	1.68	10.14	49.38	1.81E-01	1.05E-01	7.95E-02	4.01E-01	3.47E-01	3.01E-01	9.19E-02	4.25E-02	3.43E-02
VB-	60d	1.01	7.25	35.14	2.40E-01	2.57E-01	1.28E-01	3.84E-01	9.50E-01	7.10E-02	1.27E-01	9.99E-02	6.11E-02
r	80d	1.00	7.00	38.26	2.66E-01	3.02E-01	1.52E-01	3.62E-01	1.91E+00	2.62E-01	1.45E-01	1.09E-01	7.59E-02
LQG	100d	1.54	8.67	26.95	7.96E-02	5.63E+00	5.51E-02	7.78E-01	1.26E+01	6.78E-01	1.40E-01	1.21E+01	8.68E-02
	120d	1.25	8.17	27.46	9.37E-02	5.50E+00	6.64E-02	9.02E-01	1.27E+01	8.02E-01	1.73E-01	1.22E+01	1.05E-01
	140d	1.80	8.27	29.72	9.79E-02	5.37E+00	6.78E-02	1.00E+00	1.27E+01	9.00E-01	1.91E-01	1.23E+01	1.11E-01
	160d	1.74	9.07	32.08	1.11E-01	5.27E+00	9.92E-02	1.38E+00	1.28E+01	1.28E+00	2.15E-01	1.23E+01	1.79E-01
	100d	1.62	7.75	60.86	9.52E-03	8.99E-02	8.87E-03	7.51E-02	6.37E-01	6.51E-02	1.13E-02	9.74E-02	1.11E-02
DR	120d	1.26	7.28	65.66	1.11E-02	9.13E-02	9.90E-03	7.10E-02	5.74E-01	6.10E-02	1.40E-02	9.97E-02	1.23E-02
Q	140d	2.38	7.82	76.90	3.17E-02	8.97E-02	2.94E-02	1.79E-01	8.56E-01	1.69E-01	3.96E-02	9.77E-02	3.67E-02
	160d	1.75	7.42	82.40	3.46E-02	9.00E-02	3.23E-02	2.08E-01	8.02E-01	1.98E-01	4.32E-02	9.75E-02	4.02E-02



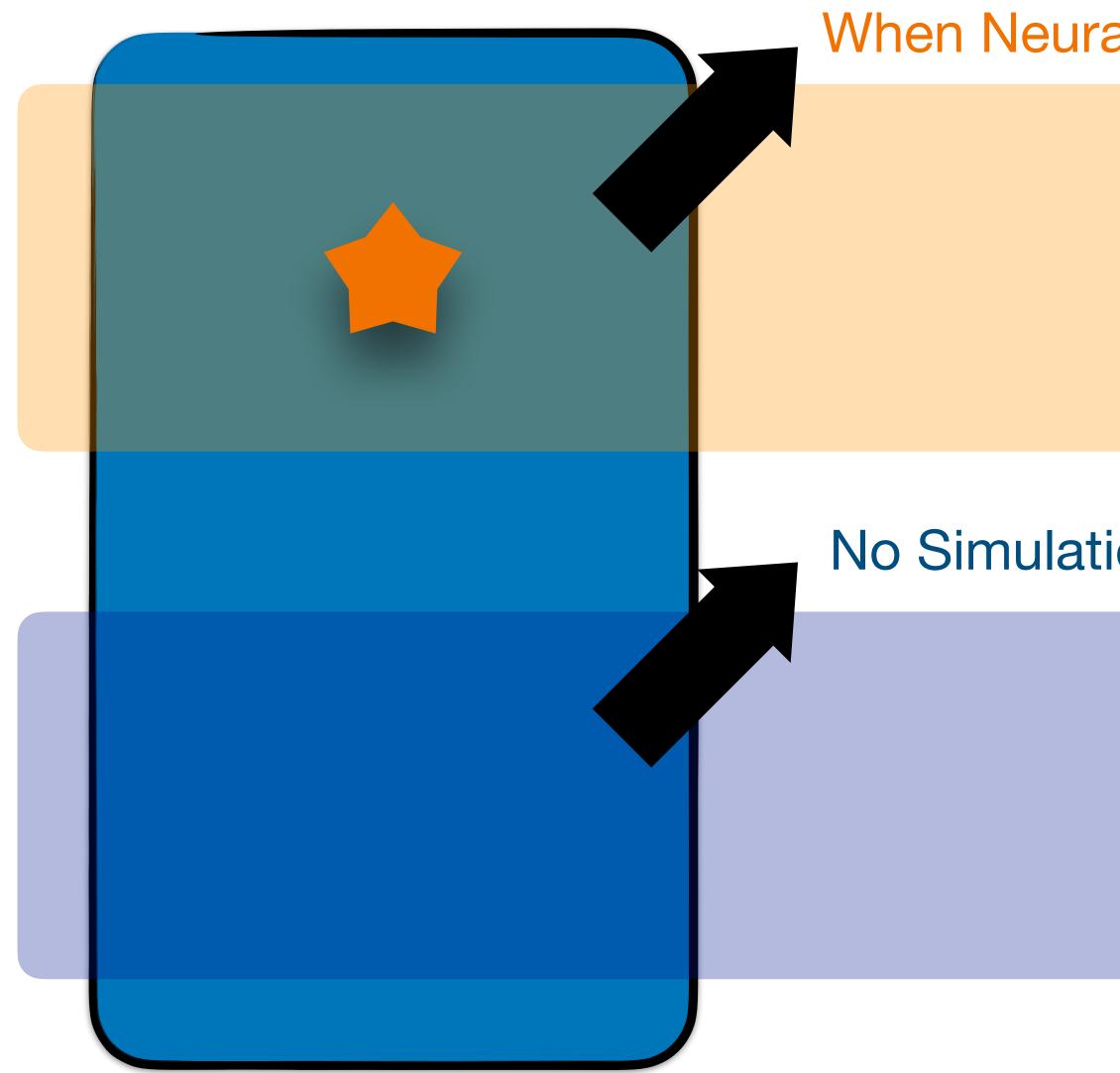
Physics-Informed Inference Time Scaling via Simulation-Calibrated Scientific Machine Learning

Zexi Fan¹, Yan Sun ², Shihao Yang³, Yiping Lu*⁴

¹ Peking University ² Visa Inc. ³ Georgia Institute of Technology ⁴ Northwestern University fanzexi_francis@stu.pku.edu.cn,yansun414@gmail.com, shihao.yang@isye.gatech.edu,yiping.lu@northwestern.edu

https://2prime.github.io/files/scasml_techreport.pdf

Our Aim Today : A Marriage



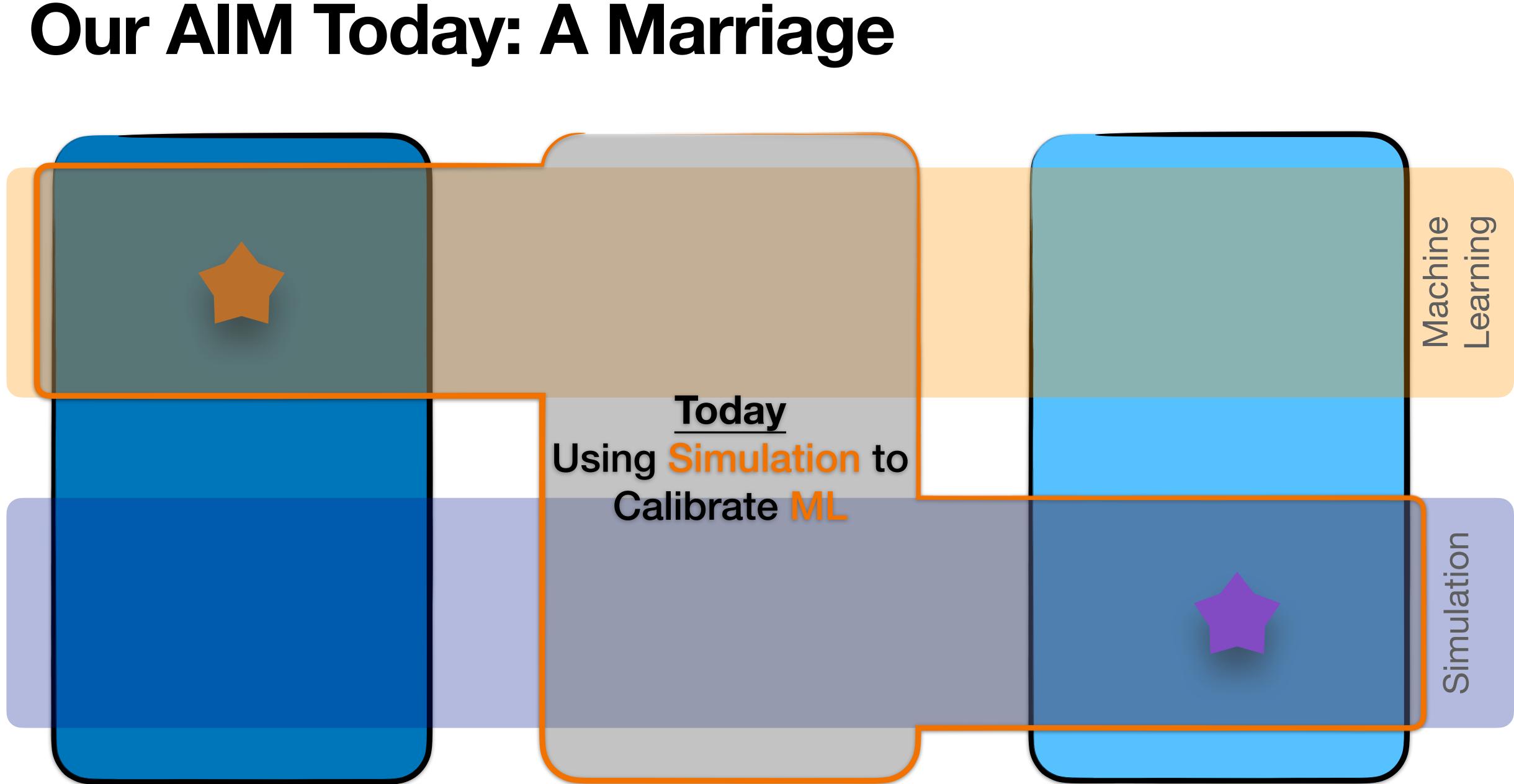
When Neural Network is good

No Simulation cost is needed

Our Aim Today : A Marriage

Provide pure Simulation solution

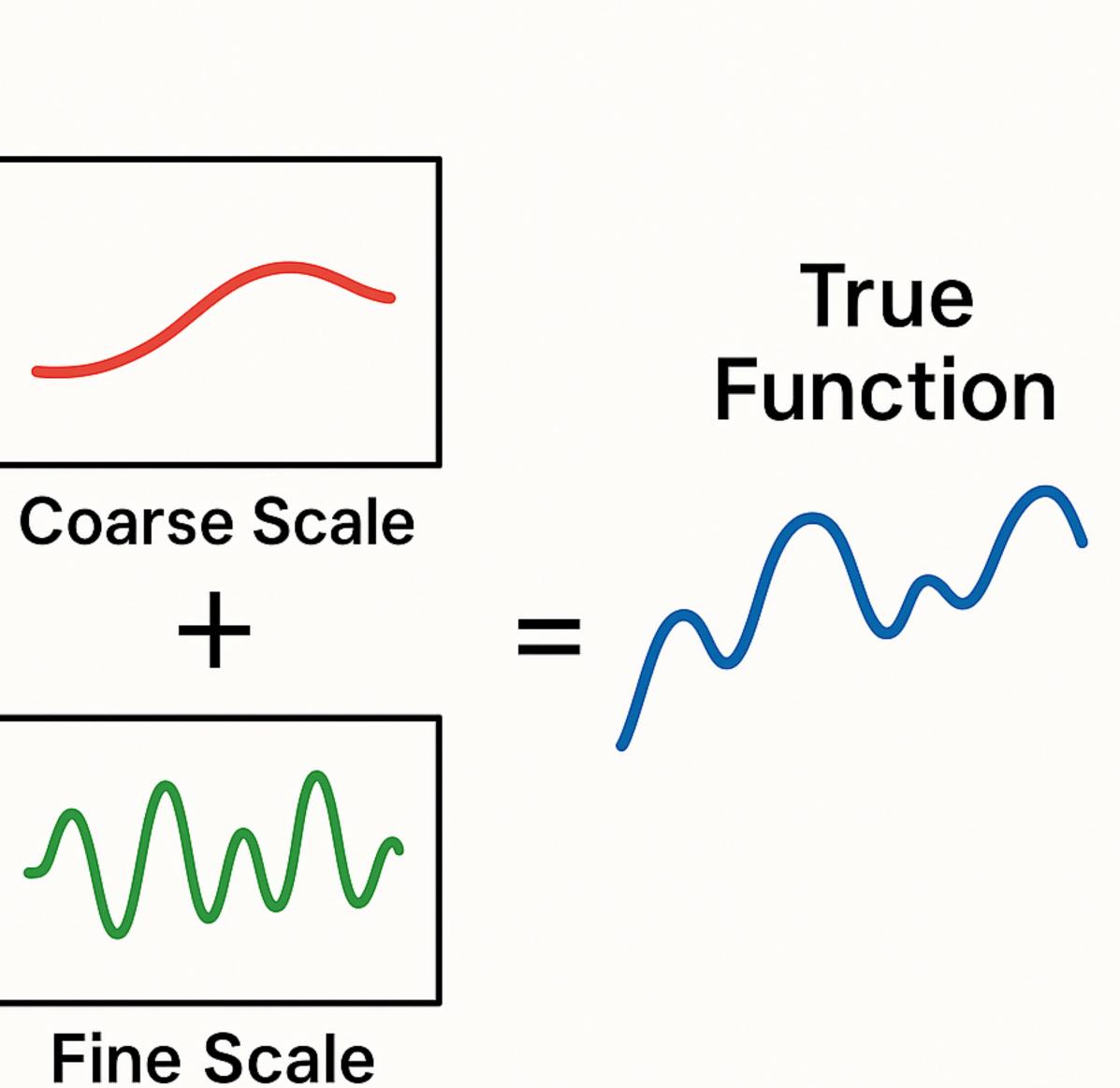
When Neural Network is bad



A multiscale view

Capture via surrogate model

Capture via Monte-Carlo



More Examples...

$$\{X_1, \dots, X_n\} \sim \mathbb{P}_{\theta} \to \hat{\theta} \to \Phi \hat{\theta})$$
Scientific Machine Learning Downstream application
$$\theta = f, \quad X_i = (x_i, f(x_i)) \qquad \Phi(\theta) = \int f^q(x) dx$$

Example 1

$$\{ \dots, X_n \} \sim \mathbb{P}_{\theta} \to \hat{\theta} \to \Phi$$

fic Machine Learning Downstream application
 $\theta = f, \quad X_i = (x_i, f(x_i)) \qquad \Phi(\theta) = \int f^q(x) dx$

Blanchet J, Chen H, Lu Y, et al. When can regression-adjusted control variate help? rare events, sobolev embedding and minimax optimality. Advances in Neural Information Processing Systems, 2023, 36: 36566-36578. **Provides minmax optimality**

 $\theta = \Delta^{-1} f, \quad X_i = (x_i)$ Λ **Example 2** $\theta = A, \quad X_i = (x_i, Ax_i)$ **Example 3** Estimation \hat{A} via Randomized SVD Estimate tr($A - \hat{A}$) via Hutchinson's estimator

$$(x_i, f(x_i)) \quad \Phi(\theta) =$$

$$\Phi(\theta) = \theta(x)$$

$$\Phi(\theta) = \operatorname{tr}(A)$$

More Examples... (Uncertainty Quantification)

$$\{X_1, \cdots, X_n\} \sim [$$

Scientific Machine Learning

Example 5

$$\theta = \theta, \quad X_i \sim$$

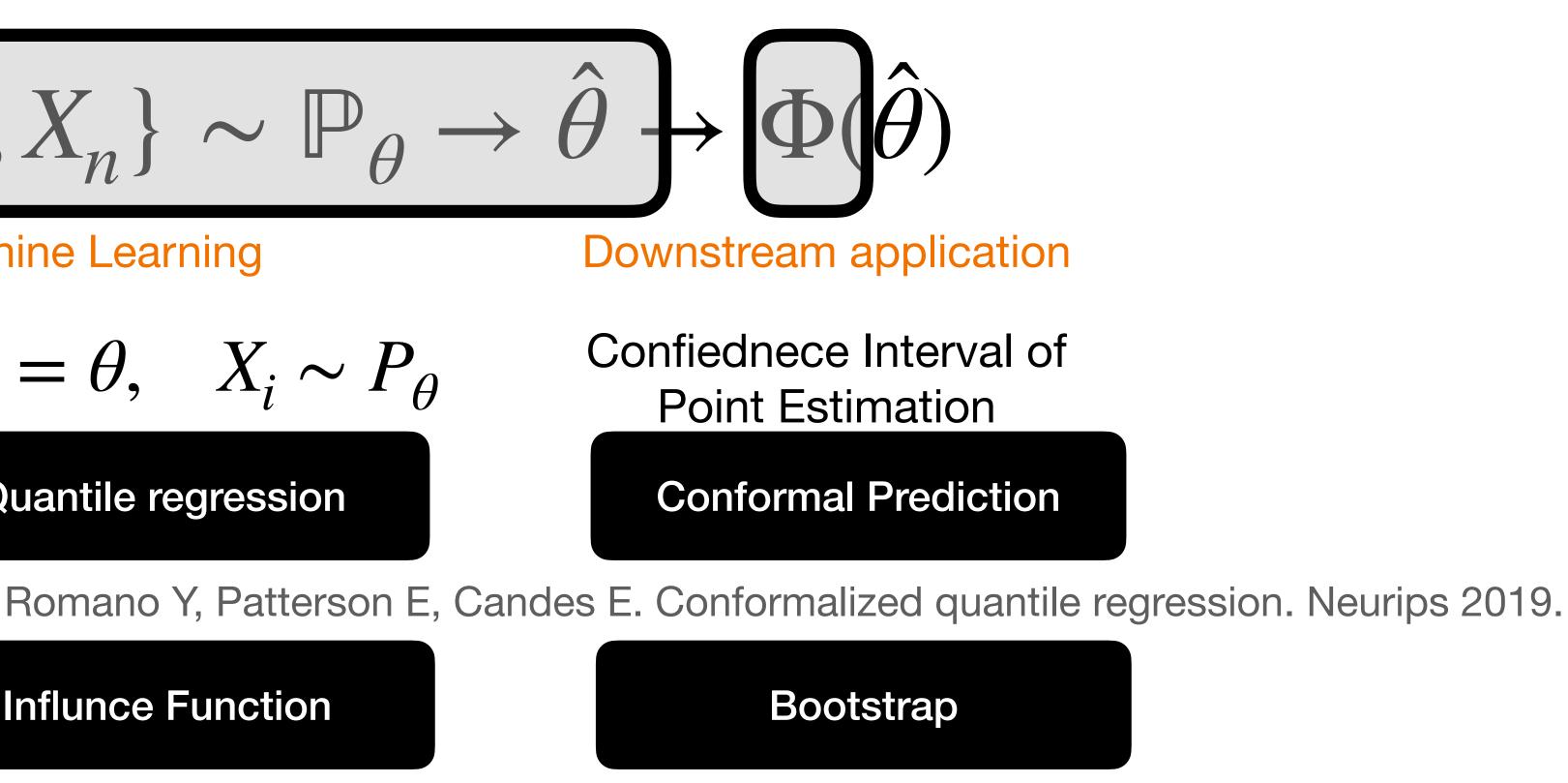
Quantile regression

Influnce Function

Liu K, Blanchet J, Ying L, et al. Orthogonal bootstrap: efficient simulation of input uncertainty. ICML 2024.

LLM

Angelopoulos A N, Bates S, Fannjiang C, et al. Prediction-powered inference. Science, 2023



Taylor Expansion

What is SCaSML about?

$$\{X_1, \cdots, X_n\} \sim \mathbb{P}$$

Step 1: Using Machine Learning to fit the rough function/environment

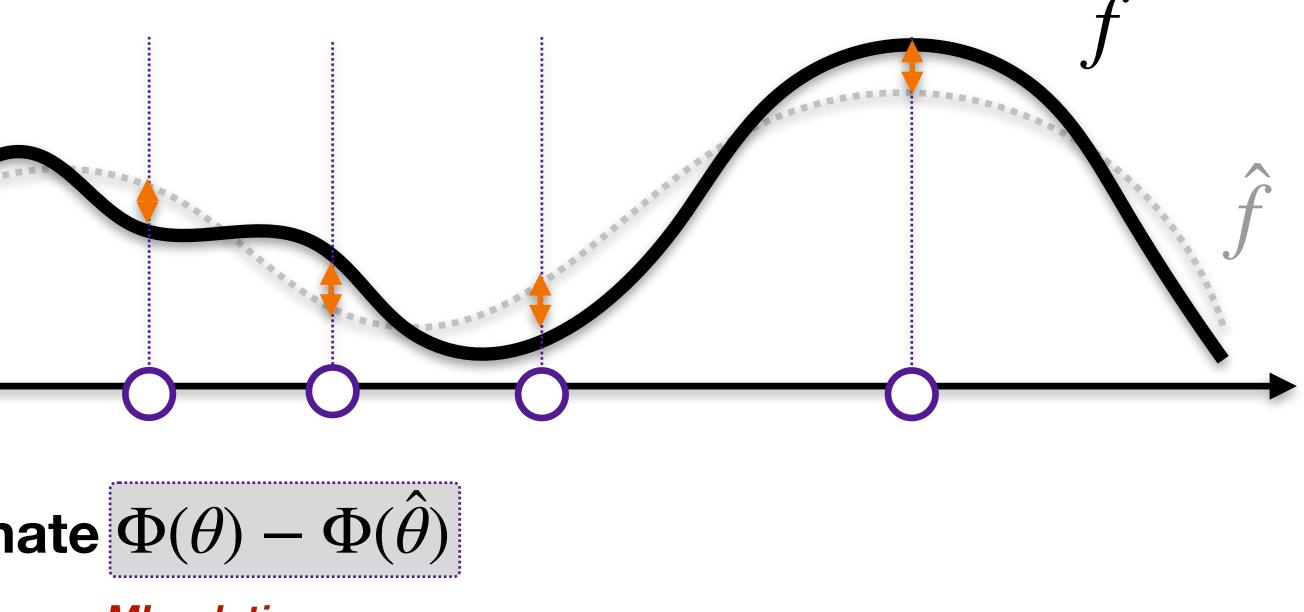
Step 2: Using validation dataset to know how much mistake machine learning algorithm has made

Step 3: Using Simulation algorithm to estimate $\Phi(\theta) - \Phi(\theta)$

Using ML surrogate during inference time to improve ML solution

McCORMICK SCHOOL OF Northwestern ENGINEERING

 $\theta_{\theta} \to \theta \to \Phi(\theta)$



Yiping Lu yiping.lu@northwestern.edu

