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The recent breakthroughs in machine learning (ML) and artificial intelligence have enabled data-
driven extraction of information for useful predictions across a wide range of science and engineering
disciplines.
My research is motivated by the use of mathematical and domain-specific fundamental principles to
enhance both the accuracy and transparency of insights and decisions in science and engineering.
I aim to understand the statistical properties and computational efficiencies of domain-specific
principles informed data-driven algorithms. I believe that combining domain-specific principles with
data-driven learning provides a wide range of benefits which inspire my research philosophy. Here I
list a few of them:
{ A direct use of machine learning methods is highly data intensity. But this data may not always

be available due to privacy considerations, changing environments, etc. However, using domain-
specific insights, one may be able to model a meaningful relationship between available observed
data/signal and target variables/signals. In these cases, one can use learning techniques to obtain
structural model-informed solutions that recover the target signal.

{ Blindly applying learning algorithms in real-world decision making problems may lead to trust-
worthy and safety issues with significant social and economic impact. Often, however, dealing
with arbitrary issues of this sort may not be tractable both statistically or computationally. Thus,
introducing an economic-based model can help alleviate these potential problems.

{ Structural models are transparent for counterfactual prediction. However, structural models
typically have approximations that may limit their predictive power. Thus, one can use a hybrid
approach. For instance, by applying data-driven non-parametric learning for some features of the
structural model, which lead themselves to direct estimation from observations. Hybrid approaches
may enjoy the flexibility of machine learning while keeping the structural model transparent and
explainable simultaneously.

{ Structural models generally involve a fundamental law, often encoded, for instance, by means
of a differential equation in high dimensions, which is generally hard to solve. Machine learning
provides a way to solve structural models with the potential to break the curse of dimensionality
via Monte-Carlo.

Although there have been several recent breakthroughs which suggest that machine learning and AI in
general hold significant promise in scientific research [19,20], we still lack fundamental understanding
that enables a full synergy between machine learning and structural models in science (including
physical and social sciences).
{ Machine learning for science and scientific discovery needs to be data efficient, especially when

scientific data is expansive to collect. However, a sample complexity theory for scientific machine
learning problems is still in its infancy.

{ How can we inject the desired physical priors into machine learning model to build more structured
and physically grounded systems?

{ Scientific machine learning models need to be robust to the environment in which they will

1/7



be used for prediction, but they are often vulnerable to perturbations, biased towards spurious
relations, and even sensitive to simple domain shift [21].

So, while structural modeling has great potential, its proper use in combination with machine learning
also brings new challenges in rigorous analysis and the development of performance guarantees.
This provides a whole host of fundamental theoretical problems of great interest, in my opinion:
{ First of all, structural models should be identifiable. Although inverse problems is an area that

has been well studied, especially in the physical sciences, identifiable results are still missing for
most social science models.

{ Computational methods in inverse problems and discovery of solutions to differential questions
often neglect practical statistical out-of-sample guarantees. For example, direct sample average
approximations to the variational form of certain PDEs will (as my research shows) result in an
enlarged variance in the frequency domain (which is relevant in several applications). I’m interested
in building a non-parametric statistical framework to study optimal performance guarantees over
various relevant criteria informed by applications.

{ Machine Learning Theory/Statistics typically deals with finite dimensional approximations. How-
ever, scientific machine learning models is more naturally posed in an infinite dimensional operator
setting in which features such as smoothness of the solution and a continuous domain are much
more natural primitive objects to consider. I am interested in studying how these statistical
properties can be learned and studied in infinite-dimensional problems.

My research aims to understand these questions and reduce the trial-and-error cost for scientific
machine learning. To fully understand these problems, my goal is to apply an interdisciplinary
research approach across computational physics, probability and statistics, control theory, signal
processing/inverse problem and operations research. Over these years, I have accumulated a rich
research experience in all of these areas, which has also equipped me with a broad skill set and
vision for my future research. I will discuss my research experience.

Research Experience A significant proportion of my research considers phenomena described by
differential equations, including applications in many science and engineering disciplines such as
physics, material science, operation research, macroeconomic etc. My previous research tends to
investigate data-driven differential equation models from the following three perspectives:

Encoding Physics Information into a Model. My initial research focus on interpreting many
popular neural networks as different numerical discretizations of (stochastic) differential equations
[1,2]. Based on this perspective, we were able to combine physical information with the deep neural
network architecture to boost the performance and transparency at the same time.
{ Learning PDEs from Data In [3,4], we present an initial attempt to learn evolution PDEs

from data. By fully exploiting the relation between the orders of differential operators and the
orders of sum rules of filters, we proposed PDE-Net which learns differential operators by learning
convolution kernels (filters) and apply neural networks or other machine learning methods to
approximate the unknown nonlinear responses. This approach combines the representation power
of the deep neural networks and the transparency of the PDE models which lead to better
generalization property towards diverse initial conditions.

{ Learning Inverse Problem In [5], we apply this idea to inverse problems. With the understanding
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of the physic behind the task, we additionally learn an terminal time for different noise level which
leads to better generalization across different noise level and different noise statistics.

{ Optimize Neural Network via Control Theory In [6,7], we apply this idea towards understanding
the training process of the deep neural networks. The control theory view-point enables us to
design 4-5 times faster algorithm for adversarial training in practice [6] and provide the convergence
proof for stochastic gradient descent training multi-layer networks in mean-field via exploring the
(local) Polyak-Lojasiewicz property [7].

Sample Complexity of Scientific Machine Learning. How large the sample size and how much
computational power are needed to reach a prescribed performance level is always the core problem for
theoretical computational science research. We answers this question in a series of work [10,11,12].
{ Statistical and Computational Analysis for ML Based PDE Solver In [10,11], we focus on a

prototype elliptic PDE Lu = f . We aim to build an estimaotr for u from random observations
{(xi, f(xi) + η)}n

i=1 of right hand side function f . We establish the information theoretical lower
bounds for learning the equation’s solution from sampled data and the first matching upper bound
for both (modified version of) Deep Ritz Method (DRM) and Physics Informed Neural Network
(PINN). We observed that DRM enlarge the variance of sampling a high-frequency single and a
modification is needed to achieve optimal rate. In [11], we explain an implicit acceleration of
using a Sobolev norm as the objective function for training, inferring that the optimal number
of epochs of DRM becomes larger than the number of PINN when both the data size and the
hardness of tasks increase in low dimension, although both DRM and PINN can achieve statistical
optimality.

{ Statistical Analysis for Operator Learning In [12], we consider the optimal learning rate
for learning a linear operator between two infinite dimensional Hilbert spaces. We provided a
novel lower bound to the literature and showed that multi-level machine learning is essential to
achieve an optimal learning rate. This example showed a fundamental difference between infinite
dimension machine learning and finite dimension one both in sample complexity and algorithmic
design.

Building Robust learning Algorithm via Inductive Bias. Overparametraization, i.e, having more
model parameters than necessary, is the core factor behind the success of modern machine learning.
However, overparametraization also enables the model to fit any noisy signal which makes the model
extremely vulnerable. My research aims to build robust overparametrized model via understanding
the inductive bias.
{ Neural Collapse and Imbalanced Classification In [14], we analyze Neural Collapse, a highly

symmetric geometry of neural networks that emerges during the terminal phase of training which
leads to better generalization performance, better robustness, and better interpretability. We
analyze a surrogate model called the unconstrained layer-peeled model where all the critical
points are strict saddle points except the global minimizers that exhibit the neural collapse
phenomenon. Based on this theory, we proposed importance tempering, which improve the
decision boundary and achieve consistently better results for overparameterized models [15] while
traditional importance weighting have less or even no effect on overparameterized models both
empirically and theoretically. We also provided theoretical guidance for temperature choosing
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under both label shift and spurious correlation setting.
{ Robust Traininig with Noisy Labels In [8], we discussed the how overparameterized neural

network can perform towards corrupted label, which is unavoidable when we collect physics signals
in experiments. We who that although overparameterization can leads to memorization of all
signals, however the discrepancy of convergence speed of different types of information can help us
to distinguish signal from the noise. This leads to a theoretical understanding on how distillation
algorithm can help within the situation that the supervision signal is noisy.

Research Plan and Goal
Moving forward, I plan to harness my theoretical skills to continue developing effective solutions
with fundamental understandings and theoretical guarantees. I strive to explore the entire pipeline of
the scientific machine-learning system. First, we need to understand which model is identifiable and
learnable. Then I aim to design the data collection process and model learning algorithms to reduce
the variance of the learned model and the computational complexity of the whole process. Finally, I
aim to design fast simulation algorithms to quantify the learned model’s risk. It’s an exciting time
to work on the interaction between mathematical modeling, computational methods, and machine
learning in this entire pipeline. I list my research plan and goal as follows.

The entire pipeline for scientific machine learning system.

Which Model is Learnable? Defining learning tasks is one of the critical problems for scientific
machine learning, while recent research has not paid that much attention to this. For example,
what signal should be collected to learn a certain target quantity? Which contains more information
with a fixed budget, cleaner data, or as much noisy data as possible contains more information for
non-parametric Bayesian filtering? How should the data collecting process and machine learning
algorithm be adapted if we aim to learn multi-scale physic? Based on our first optimal sample
complexity bounds for scientific machine learning, I will continually investigate sample complexity
from an information theoretical viewpoint.

How to design the experiment? Correlation is not causal. While machine learning for scientific
problems has been widely studied in recent years, causal inference for physics problems as the
potential to explore. Causally learned models enjoy stable generalization capabilities of data-driven
inference. I plan to study causal inference from the following two perspectives. Firstly, causal
inference always implements a randomized experiment that lets one know the effect of specific
environmental changes. This provides more information to reconstruct the underlying model. How
identifiable results and statistical sample complexity can be improved is interesting. Secondly,
stochastic simulation of randomized experiments always has a large variance for high-dimensional
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physics. We aim to find computational methods for optimal experiment design. Although finding
optimal design is known to be NP-hard, our recent work [16] finds out that experiment design with
synthetic control is equivalent to phase synchronization. We numerically solved the problem via the
generalized power method and provided first global optimal guarantee for experiment design under
certain statistical generative models. I plan to extend our approach to specific physics problems.

How to learn our model? Data-driven algorithms always needs a sample average approximation.
While we consider the sample average approximation in terms of an optimization framework, stability
results of the approximated objective function are needed. However, stability is surprisingly not always
satisfied for constrained and non-smooth infinite-dimensional optimization problems. I plan to work
on multi-stage stochastic control (fundamental in operation research) [17] and (super-)martingale
optimal transport (a key problem for auction theory and robust hedging). Both are examples of
important problems where sample average approximation fails to converge to the optimal solution.
In this project, we aim to construct smoothed relaxations of these objective functions. Our approach
has a deep connection with the distributional robust optimization and outlier detection. I aim
to build a computational feasible and sample efficient algorithm to learn the infinite dimensional
non-smooth problem based on our stability resutls.

How to quantify the risk? Quantifying the impact of input uncertainty, environmental uncertainty,
and model misspecification needs substantial computation demand, especially when a computational
expansive model is included. In [18], I understand this problem under a semi-parametric framework.
Combining my expertise in semi-parametric statistics and stochastic simulation, I aim to design
efficient simulation algorithms for quantifying the risk of a certain model. I am also working on
extending my framework for infinite-dimensional models, where the variance may explode up to
infinity.

Significance of Proposed Work
With the rapid development of sensors, computational power, and data storage in the past decade,
a huge amount of data can be easily collected and efficiently stored. Such a vast quantity of data
offers new opportunities for the data-driven discovery of physical laws. From the experimental
design to data analysis, from physics law discovery to make useful predictions, AI can help to make
the full process of scientific discovery fully automated. However, the lack of guidance of model and
algorithm designs, and robustness of the trained models is a clear threat to this area.
Overcoming the obstacles mentioned before needs interdisciplinary research, varying from numerical
analysis, statistics to applied probability and even physics and economics. At the same time, it also
raises new challenges to theoretical analysis. I have armed myself broad vision of mathematical
background and the skills to model real-world motivations as computational feasible model to
investigate through previous research. It lays a solid foundation for my future career path to build
theoretical foundation for scientific machine learning and make them more transparent and robust.
I’ll continue conducting concrete contribution to the analysis and design of consistent, statistically
and computationally efficient algorithms for scientific machine learning, where the variance of
simulation may explode up to infinity.
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