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Two Disciplines in Science

Without Machine Learning

Differential equation
modeling

Solving using "
numerical algorithms
%VERY SPECIFIC

INSTRUCTIONS

Make Useful Prediction

‘mathematical modeling"




Two Disciplines in Science

Differential equation Without Machine Learning With Machine Learning

modeling

Data Collecting

% Machine Learning
Causal

Inference

Randomized
Experiment

Solving using "
numerical algorithms
VERY SPECIFIC

INSTRUCTIONS




A combination of the two discipline?

Differential equation Without Machine Learning With Machine Learning

modeling

000
| Data Collecting

Y

Machine Learning

Randomized
Experiment

Solving using "
numerical algorithms
VERY SPECIFIC

INSTRUCTIONS

W

What’s the benefit of
combining the two approach?




Two Disciplines in Science

Structural Model

. 4 Differential equation
¥ % modeling

Solving using
numerical algorithms

@ Transparent

Lots of approximations
Limits the power

Machine Learning

Data Collecting

@ Machine Learning
@ Flexible, Accurate

Blackbox
Data intensive




Two Disciplines in Science

Structural Model

. 4 Differential equation
~% modeling

Data Collecting

ou(x, t
ulx, 1 = F(u, V u, V%u,---)

Convolutional Filter

Moment Conditions
SOlvmg using . Machine Learning
numerical algorithms
[Long-Lu-Ma-Dong ICML2018]

Transparent I :
@ P ‘ e | @ Flexible, Accurate

Lots of approximations | - TR0 L0 Blackbox
Limits the power SR Data intensive

.~ ‘“learning augmented
| algortihm”




Not Just Differential Equation models
Model




Not Just Differential Equation models
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Not Just Differential Equation models

Mmﬁp
Hamilton Jacobl Equation  Value Function Reward Function
Kolomoglov Equation Committor function Boundary Condition

Incentive Model
10 Super-martingale OT
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Current Research Au =f

Reconstruct the solution u
With observation of f: {x;, f(x;) }

Control and MFG

Auction
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Current Research Au =f

Reconstruct the solution u L earn from data pair {u,, f;}

With observation of f: {x;, f(x;) } ‘Operator Learning/Functional data analysis”

Control and MFG

Auction
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Current Research Au =f

Reconstruct the solution u L earn from data pair {u,, f;}

With observation of f: {x;, f(x;) } ‘Operator Learning/Functional data analysis”

Control and MFG

Auction




Research Overview

Au=f

L earn the model A from
data pair {u,, [}

Reconstruct u with Recover parameter @ in
observation of f: {x;, f(x,) ] Model A

Rough Experiment Model Uncertainty
Modeling Design Learning Quantification

Consistency Computation Convergence rate —
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Research Overview

Learn the model A from
data pair {u;, f;}
INnteraction between model and data

Model
Learning

Au=1f

Convergence rate —— -




Optimal (Linear) Operator Learning

Au=f

-

Learn the model A from
data pair {u,, f:}
16




Example: Meta-Modeling

Using learned operator as an —
® ansatz to accelerate simulation i Ii; —
Reward function -> Value function d :;
Climate at time t -> Climate at time t+1

Input: Output:
simulation coefficients simulation result

U, f

<hoo Y, Lu J, Ying L. Solving parametric PDE problems with artificial neural networks

~eliu-Faba J, Fan Y, Ying L. Meta-learning pseudo-differential operators with deep neural networks

Long Z, Lu Y, Ma X, et al. Pde-net: Learning pdes from data

Lu L, Jin P, Karniadakis G E. Deeponet: Learning nonlinear operators for identitying differential equations based on the_,,,,.o......ﬁ‘ .
universal approximation theorem of operators '

1711 Z, Kovachki N, Azizzadenesheli K, et al. Neural operator: Graph kernel network for partial differential equations
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Example: Meta-Modeling

Using learned operator as an —
® ansatz to accelerate simulation i F’; —
Reward function -> Value function d 3
Chmate at t|me t -> Climate at time t+1

Input: Output:

\ simulation coefficients simulation result
Outperforms the World's Best

Weather Forecasting System Fast predictive ana\ytic even when the

In the new paper GraphCast: Learning Skillful Medium-Range Global Weather Forecasting, a research team

from DeepMind and Google presents GraphCast, a machine-learning (ML)-based weather simulator that scales .

well with data and can generate a 10-day forecast in under 60 seconds. GraphCast outperforms the world’s M O d e ‘ e X I St
most accurate deterministic operational medium-range weather forecasting system and betters existing ML-

based benchmarks.

<hoo Y, Lu J, Ying L. Solving parametric PDE problems with artificial neural networks

~eliu-Faba J, Fan Y, Ying L. Meta-learning pseudo-differential operators with deep neural networks

Long Z, Lu Y, Ma X, et al. Pde-net: Learning pdes from data

Lu L, Jin P, Karniadakis G E. Deeponet: Learning nonlinear operators for identitying differential equations based on the_,,,,........‘
universal approximation theorem of operators

18Li Z, Kovachki N, Azizzadenesheli K, et al. Neural operator: Graph kernel network for partial differential equations
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(Linear) Operator Learning

Can we learn the mapping from infinite

dimensional space to infinite dimensional
space?

Functional data analysis!

Data are function pairs {u;, f;}"_,

Learn a mapping from function space to function space
U /i

Let’s first understanding the linear case!

19




Linear Operator itself is important still...

Learn p(Y'| X) via learning the linear operator

Pin(x) = pouty) = JP(Y | X)Pin(xX)dx

Distribution is infinite dimensional

Distribution of x Distribution of y




Linear Operator itself is important still...

Learn p(Y'| X) via learning the linear operator

Pin(x) = pouty) = Jp(y | X)Pin(xX)dx

Distribution 1s infinite dimensional

Instrumental variable regression Time series modeling

Generator/Koopman
¢ Operator/CME




Linear Operator Learning

L earning “infinite-
dimension” matrix

f A U * Randomly sampled

h Aim to learn

Data collected
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Why infinite dimensional operator is hard

L earning “infinite-
\ dimension” matrix

N o o ance

H

| Talwai P, Shameli A, Simchi-Levi D.
AISTAT 2022
L|Z Meunier D, A Gretton. Neurips 2022

SO ’04’0.

oop MV, et al. arXiv:2108.1274157"%)
§ e, F)ek
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Why infinite dimensional operator is hard

L earning “infinite-
dimension” matrix
Previous Work:
Assume Fast Eigen Decay
to ensure finite variance.
[1] Talwai P, Shameli A, Simchi-Levi D.
AISTAT 2022
[2] Li Z, Meunier D, A Gretton. Neurips 2822
[3] de Hoop MV, et al. arXiv:2108. ,9 )

Fast Variance Decay
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Why infinite dimensional operator is hard

— ‘ \ m _earning “infinite-

2trix

Will removing the fast variance decay -
assumption leads to some thing different? ance.

alwal P, Shameli A, Simchi-Levi D.
AISTAT 2022
[2] Li Z, Meunier D, A Gretton. Neurips
[3] de Hoop MV, et al. arXiv:2108.120¢%~.§




to finite dimensional. Why | should

Direct Discretization may be suboptimal
M= Although nature is infinite
TS dimensional, | can always project it
»v care the infinite dimensional
26

learning?

The discretization may
lead to suboptimal rate!
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Spaces we are interested

Hilbert space have finite variance as finite dimensional space
Eigen decomposition

— /11 +... K(x,y) = Z /lnen(u)en(v)
n=1

1
Figendecay 4, xn »

v

Ensures finite variance




Spaces we are interested

Hilbert space have finite variance as finite dimensional space
Eigen decomposition

— /11 +... K(x,y) = Z /lnen(u)en(v)
n=1

1
Figen decay A, xn 7

‘Kernel Sobolev space”: larger than RKHS H”  Fourier expansion
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Spaces we are interested

Hilbert space have finite variance as finite dimensional space
Eigen decomposition

— /11 +... K(x,y) = Z /lnen(u)en(v)
n=1

1
Figen decay A, xn »

‘Kernel Sobolev space”: larger than RKHS H”  Fourier expansion

/2 ”
with (a;))2, € £5, p € (0,1) |2 RKHS
. p=0 s=1 L




Problem Formulation

H

P_revious Work:

1] Talwai P, Shameli A, Simchi-Levi D. AISTATS 2022
2] Li Z, Meunier D, A Gretton. Neurips 2022
3] de Hoop MV, et al. arXiv:2108.12515

A doesn’t belong to the space

H” is a larger space

Same technique as H? = R for ridge regression




Problem Formulation

HP H

Previous Work:

1] Talwai P, Shameli A, Simchi-Levi D. AISTATS 2022
2] Li Z, Meunier D, A Gretton. Neurips 2022

3] de Hoop MV, et al. arXiv:2108.12515

H’

How the optimal rate depend on y (output space complexity)?
|s the previous algorithm still Optimal®?




Problem Formulation

Learn an operator A* with bounded || - || gs_, iy norm
Respectto || - | HP —Hr Hilbert-schmidt norm

el

Evaluation norm

Crror(A) = sup  ||A%f— AfHHy
1A, <1




Main Result: Lower bound

_earn an operator A* with bounded || - || z4_, z» norm
Respect to || « || ys_ gy

Hilbert-schmidt norm
For all (randomized) estimators &£, we have

N ) _mi 1=y
sup  |[Z({u;, f;}2)) _A”Hﬁ'—>Hy' > N min{ 5
With N random observations




Main Result: Lower bound

Learn an operator A* with bounded || - || gs_, iy norm
Respect to || « || ys_ gy

Hilbert-schmidt norm

For all (randomized) estimators &£, we have o,y ouiput function space
' —V }

N \ 2 — min{ —
SUP ”g({ui’f;}ltl) A”Hﬁ,—>H?’, Z ]ley input fuAction 7’ ace
VAl 5, p <1 | |
With N random observations

Same rate as previous work
o : Eigen-decay of RKHS

New Rate In the literature caused by infinite dimensional output




Main Result: Lower bound

Learn an operator A* with bounded || - || gs_, iy norm
Respectto || - || H S HY Hilbert-schmidt norm

For all (randomized) estimators £, we have o, ouiput funciion space
{ﬁ ﬁ ?’ }’}

sup | Z({w. fi}in) — Al > N~ /

Al 5 <1 HF —Hr ™~ Only input function space
—H/— .
i With N random observations

Reason we introduce the test norm




Main Result: Lower bound

_earn an operator A* with bounded || - || z4_, z» norm
Respect to || « || ys_ gy

Hilbert-schmidt norm

For all (randomized) estimators &£, we have

N ) —mi 17
sup  |[Z({u;, f;}2)) _A”Hﬁ'—>Hy' >y~ min! -}
With N random observations

A magic result, can you explain
it to me in a simple way?

30



Consider the matrix view...

Operator is an “infinite” dimensional “matrix”

Qutput space
Higher Variance but Smaller Bias

Low frequency — high frequency

Input space

Low frequency — high frequency




Bias Variance Tradeoff

What is needed to achieve N learning rate

Output space . . “Irade off”
. |
NOr [ -
> . ghore pa t Bl1as
% S‘ of the matrix approximation error
. +
T
: | earn part |
g h of the matrix Variance
=

Input space

L N

Low frequency — high frequency




Optimal shape for Bias Variance Trade Off

What is needed to achieve N learning rate
Qutput space

Bias is larger than

Low frequency — high frequency

Input space

Low frequency — high frequency




Optimal shape for Bias Variance Trade Off

What is needed to achieve N learning rate
Qutput space

Variance is larger than N’

Low frequency — high frequency

Bias is larger than

Input space

Low frequency — high frequency




Optimal shape for Bias Variance Trade Off

What is needed to achieve N learning rate

When 6 varies, there are three possible cases

No possible algorithm
v v K

_




Optimal shape for Bias Variance Trade Off

What is needed to achieve N learning rate

Output space Orange line should always dominate the Blue Line
Variance is larger than NV v ‘ Rate determined
Dy output space
Yy —7

Y

Rate determined
by Input space

Low frequency — high frequency

Bias is larger than Input space

Low frequency — high frequency




Optimal Algorithm

What is the OPTIMAL machine learning algorithm?

Qutput space ,
Rectangular covering the blue part

® Wwithout touching the orange part

\ A ridge-regression/
Discretization(PCA-Net) Is

learning a rectangular

—
Low frequency — high frequency

Low frequency — high frequency

Input space




Optimal Algorithm

What is the OPTIMAL machine learning algorithm?

Qutput space ,
Rectangular covering the blue part

® Wwithout touching the orange part

\ Multilevel Training
\ Only O(InIn N) level is needeo

Input space

Low frequency — high frequency

-|—>
Low frequency — high frequency




Optimal Algorithm

What is the OPTIMAL machine learning algorithm?

Qutput space ,
Rectangular covering the blue part

recluce the bias while e without touching the orange part

control the variance

\

¥ Multilevel Training

Only O(InIn N) level is needeo

Low frequency — high frequency

—
Low frequency — high frequency

Input space

. . /<0 JUNIO;;‘._
L) A F, )
Ridge reqressionfra=a)
oS e 2\ = \\
: 7 Z\ 2
:ug e | 4
&

Projection to certain basis in output space
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Optimal Algorithm Changed...

Low frequency — high frequency

Qutput space

reduce the bias while
control the variance

—
Low frequency — high frequency

Previous Works

1] Talwai P, Shameli A, Simchi-Levi D. AISTATS 2022
2] Li Z, Meunier D, A Gretton. Neurips 2022
3] de Hoop MV, et al. arXiv:2108.12515

Ridge regression

Indeed Finite
variance

Low frequency — high frequency




Optimal Algorithm

Multilevel Training
What is the OPTIMAL machine learning algorithm?

Qutput space

What if the two lines coincide?

Y o X
<

Input space

Low frequency — high frequency

L

Low frequency — high frequency




Optimal Algorithm

Multilevel Training
What is the OPTIMAL machine learning algorithm?

Qutput space
?

Only O(In N) level is needed

What if the two lines coincide?

%
(o}
(0)

Low frequency — high frequency

, |nput space

Low frequency — high frequency




Matches Empirical Using

d) Encoder e) Processor f) Decoder

- J, Returned NN
Initialization ’ Result L

0

—ast reconstruction of hierarchical matrix/
Green function Linear Case

GraphCast: Learning skillful medium-range
global weather forecasting

Remi Lam™1, Alvaro Sanchez-Gonzalez"-!, Matthew Willson™1, Peter Wirnsberger ™1, Meire Fortunato ™!,
Alexander Pritzel 1, Suman Ravuril, Timo Ewalds!, Ferran Alet!, Zach Eaton-Rosen!, Weihua Hul,
Alexander Merose2, Stephan Hoyer2, George Holland!, Jacklynn Stott!, Oriol Vinyals!, Shakir Mohamed!

and Peter Battaglial

Multi-level Machine Learning
https://arxiv.org/pdf/2212.12794.pdf




ICLR Statistics

R7 : ratings @2022-12-17 | Rating distribution:

800

Active
JJ0 - .
Withdraw
mr,uu 561
c : " 524
0 50 Average rating: 5.40 471
wn /
b L 432
E'" — 151
a?nn
# . 220
270
148
20- 32
a7
10 <U :
o0 ' 4
WoAF A2 4 4R Al A Y O W P g o et AY A0 P P QP 92
Rating

R6 : ratings @2022-12-11 | Rating distribution.
R5 : ratings @2022-12-04 | Rating distribution.
R4 : ratings @2022-11-28 | Rating distribution.
R3: ratings @2022-11-21 | Rating distribution.
R2 : ratings @2022-11-17 | Rating distribution.
R1 : ratings @2022-11-05 | Rating distribution.
AR : R7-R1.

Ranked top 4/4126 in all ICLR 2023 submissions

All Submissions Statistics

# (40419) Title R1 R7 v R7-std AR Ratings

: : . . . . 10, 8, 6

1 Universal Few-shot Learning of Dense Prediction Tasks with Visual Token Matching 8.00 9.33 0.94 10.8. 10

. : : L 8,8, 8,10

2 Emergence of Maps in the Memories of Blind Navigation Agents 8.50 9.00 1.00 8 10.10

: NPT e . 8, 10,10, 5

3 Understanding Ensemble, Knowledge Distillation and Self-Distillation in Deep Learning 8.25 9.00 1.00 o
- : : . : - 10,5, 8, 8,6

4 Minimax Optimal Kernel Operator Learning via Multilevel Training 7.40 8.80 0.98 1.40

10, 8, 8, 8,10




Take home message

Learning in infinite dimensional space is hard due to the
infinite variance

The hardness of learning a linear operator is determineo
py the harder part between the input and output space

Single level ML leads to sub-optimal rate, multi-level is
needed.




Current Research

Learn from data pair {u,, f; }
"Operator Learning/Functional data analysis”

Methodology

LU

Theory

[Jin-Lu-Blanchet-Ying 23]




Current Research Au =f

Can we reconstruct u q? R ?
With observation of f: {x;, f(x;) } '
Methodology &)
Is direct (plug-in) estimator optimal?
Control and MFG
Auction

Recover parameter 6 in Model &
s&.9. Drift, Diffusion Strength




Current Research Au =f

Can we reconstruct u Main 1d
With observation of f: {x;, f(x;) } diin 1dea

Methoaology Change solving the model to
solving a minimization problem

Control and MFG

Auction

54




Current Research

Can we reconstruct u Main 1d
With observation of f: {x;, f(x;) } diin 1dea

Methoaology Change solving the model to
solving a minimization problem

—

Control and MFG 1 Design a criteria of whether the model
nave been solvead

Auction J\ Vu(x) | = 2u(x)f (x)dx [(AM — f)7dx

2 Sample Average Approximation+ML

55




Current Research

Can we reconstruct u Main 1d
With observation of f: {x;, f(x;) } diin 1dea

Methoaology Change solving the model to
solving a minimization problem

Control and MFG
[\ Vux)|* = 2u(x)f(x)dx J(Au — )?dx

Auction sub-optimal optimal

[Lu-Chen-Lu-Ying-Blanchet ICLR22]
Direct Sample Average Approximation is not
optimal for all criteria.

y N A
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Current Research

Can we reconstruct u Main 1d
With observation of f: {x;, f(x;) } diin 1dea

Methoaology Change solving the model to
solving a minimization problem

Control4aDRM discretized

[\ Vux)|* = 2u(x)f(x)dx J(Au — )?dx

Auction |But not A sub-optimal optimal

[Lu-Chen-Lu-Ying-Blanchet ICLR22]
Direct Sample Average Approximation is not
optimal for all criteria.

y N A
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Current Research

Can we reconstruct u
With observation of f: {
Methodology

Karniadakis 19] [Sirignano-Spill
'Chen-Hosseini-Owhadi-Stuart

/hou 20]...

xi’f(xi) }

Han-dentzen-E 18] [Yu-E 18] [Raissi-Perdikaris- _ L., .
liopoulos 18] solving a minimization problem

Main Ildea

Change solving the model to

21] [Zang-Bao-Ye-

Control and MFG

[Guo-Hu-Xu-Zhang 19][Wang- J\ Vu(x) \2 — 2u(x)f(x)dx J(Au — )?dx

Zariphopoulou-Zhou 21][Dai-Gluzman 22]

Auction “implicit Sobolev acceleration” Faster

| Duetting-Feng-Narasimhan-Parkes- . . .

Ravindranath 19] [Rahme-Jelassi-Matt [Lul—Blanqhet—Ymg Neur|p822] analysis the
optimization dynamic.

Weinberg 21]

538

Using sobolev norm as 10ss function
can accelerate optimization




Current Research

Can we reconstruct u Main 1d
With observation of f: {x;, f(x;) } diin 1dea

Methoaology Change solving the model to
solving a minimization problem

Control and MFG X

[\ Vu(x) \2 — 2u(x)f(x)dx (Al — f)*dx

J

Auction

Pre-ml Experience:
Double the condition =,
o number AT




Current Research

Can we reconstruct u Main 1d
With observation of f: {x;, f(x;) } diin 1dea

Methoaology Change solving the model to
solving a minimization problem

Control and MFG
[\ Vux)|* = 2u(x)f(x)dx J(Au — )?dx

/= <9’ KX>

“Ditferential operator preconditions the keme\
Integral operator” PN

Auction

60




Insight for Selecting Algorithm

1
Deep Ritz Method High dimensional problem © 9ap IS ie

Smooth prob‘em S IS the smoothness

PINN Low dimensional problem, Non-smooth
problem

| don’t care theory, what
can you tell me?




Research Overview

Au=f

L earn the model A from
data pair {u,, [}

Reconstruct u with Recover parameter @ in
observation of f: {x;, f(x,) ] Model A

Rough Experiment Model Uncertainty
Modeling Design Learning Quantification

Consistency Computation Convergence rate —

Low
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Questions that | want to address...

DRO+1 /epi-convergence based stability
result in infinite dimensional

Is all the model learnable?

Statistical Consistency

63




Questions that | want to address...

- Infinite dimensional - integration by parts

Is direct (plug-in) estimator optimal?

Convergence Rate

DRO+1 /epi-convergence based stability
result in infinite dimensional

Is all the model learnable?

Statistical Consistency

04




Questions that | want to address...

- Infinite dimensional - integration by parts

Is direct (plug-in) estimator optimal?

Convergence Rate

DRO+1 /epi-convergence based stability
result in infinite dimensional

Is all the model learnable?

Statistical Consistency

Spectral methods for optimal
experiment design

Is random sampling the best experiment?
How can we compute the best experiment?

-Xperiment Design

69




Questions that | want to address...

- Infinite dimensional - integration by parts

Is direct (plug-in) estimator optimal?

Convergence Rate

DRO+1 /epi-convergence based stability Fast bootstrapping using model
result in infinite dimensional Information

Is all the model learnable? How can we do the fast UQ?

Inference

Statistical Consistency

Spectral methods for optimal
experiment design

Is random sampling the best experiment?
How can we compute the best experiment?

-Xperiment Design

00




Research Overview

Theoretical Support

(Deep) Learning Theory and Practice Optimal Experiment Design
Control based DL Thoery:[Lu-Zhong-Li-Dong ICML 18] [Zhang-Zhang-Lu-Zhu- [Lu-Li-Ying-Blanchet arXiv 22]“spectral method”
Dong Neurips 19] [Lu et al ICML 20] “Neural ODE™ On going: Numerical linear algebra, Frank-Wolfe

DL Theory: [Ji-Lu-Zhang-Dengt-Su ICLR 21] [Zhang-Yu-Lu-He AISTAT 23] Methoas....




Research Overview

Theoretical Support

(Deep) Learning Theory and Practice Optimal Experiment Design

Control based DL Thoery:[Lu-Zhong-Li-Dong ICML 18] [Zhang-Zhang-Lu-Zhu- [Lu-Li-Ying-Blanchet arXiv 22]“spectral method”
Dong Neurips 19] [Lu et al ICML 20] “Neur DDE” On going: Numerical linear algebra, Frank-Wolfe

DL Theory: [Ji-Lu-Zhang-Dengt-Su ICLR 21 ’hang-Yu-Lu-He AISTAT 23] Methods....

| want to work on machine learning for solving PDE. Whose paper do y
read?

There are many researchers who have made contributions to the field hine learning @ &7

for solving PDEs. Here are a few papers and researchers to get you sta

1. Maziar Raissi, Paris Perdikaris, and George Em Karniadakis, "Physic
networks: A deep learning framework for solving forward and in
involving nonlinear partial differential equations." Journal of Comp® Physics,
2019.
Yiping Lu, Weinan E, and Jianfeng Lu, "Beyond finite layer neural networks: Bridging
deep architectures and numerical differential equations." Communications in
Mathematics and Statistics, 2019.

. Sirui Bi, Lihong V. Wang, and Eric P. Xing, "Solving high-dimensional partial differential

equations using deep learning." Proceedings of the National Academy of Sciences,
2020.

. Jiequn Han, Dongbin Xiu, and George Em Karniadakis, "Accelerating scientific
computing with auto-tuned sparse tensor contractions." Proceedings of the National
Academy of Sciences, 2020.

. Eldad Haber and Lars Ruthotto, "Stable architectures for deep neural networks."

Inverse Problems, 2017.




Research Overview

Theoretical Support

(Deep) Learning Theory and Practice Optimal Experiment Design
Control based DL Thoery:[Lu-Zhong-Li-Dong ICML 18] [Zhang-Zhang-Lu-Zhu- [Lu-Li-Ying-Blanchet arXiv 22]“spectral method”
Dong Neurips 19] [Lu et al ICML 20] “Neural ODE™ On going: Numerical linear algebra, Frank-Wolfe
DL Theory: [Ji-Lu-Zhang-Dengt-Su ICLR 21] [Zhang-Yu-Lu-He AISTAT 23] Methoas....

+Ditferential equation modeling

Theo IV ‘Fast rate generalization bound”+"Kernel Analysis” MethOdOlOgy
[Lu-Chen-Lu-Ying-Blanchet ICLR 22] [Lu-Blanchet-Ying Nuerips 22] [Long-Lu-Ma-Dong ICML 18] [Long-Lu-Dong JCP 19] [Zhang-Lu-
[Ji-Lu-Blanchet-Ying ICLR 23] Liu-Dong ICLR 19]

Interdisciplinary research
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Optimal Algorithm

What is the OPTIMAL machine learning algorithm?

Qutput space

reduce the bias while

\\:ontrol the variance

CLk (éKK + 7‘1('K)1) : -

Ridge regression

Projection to certain basis in output space

Low frequency — high frequency

]

—
Low frequency — high frequency




Optimal Algorithm
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Optimal Algorithm

What is the OPTIMAL machine learning algorithm?

Qutput space

reduce the bias while

\x:ontrol the variance
///
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Algorithmic Literature Overview

ou(x, t) , |
Dou — F(u, qu, qu, ...)
ot
Convolutional kernel
, ‘Finite-difference”

u,=u*[—1,1]

Neural Network

Approxime l1or ,
to the nonl nea: {
function

F(x, y, Doou, Dygu,... ... ) U= Dyu+ét -F(x, y;, Dyou, Do 4, ... ...)

Definition 2.1 (Order of Sum Rules). For a filter q, we say
q to have sum rules of order o = (a1, ), where a € 7.3,
provided that

> Kqlk] =0 2)

keZ2

for all B = (B1, B2) € Z3 with |B| :== 1 + B2 < |a| and
for all B € Z7 with |B| = |a| but B # o. If (2) holds for

Long Z, Lu Y, Ma X, et al. Pde-net: Learning pdes from data
nternational Conference on Machine Learning. PMLR, 2018: 3208-3216.




Open Problems: Nonlinear-Operator-Learning
Standard non-parametric rate: n @ ,
‘dimension” &

the k-nearest-neighbour estimator (Kudraszow & Vieu, 2013). The development of functional
nonparametric regression has been hindered by a theoretical barrier, which 1s formulated in Mas
(2012) and linked to the small ball probability problem (Delaigle & Hall, 2010). Essentially, in a
rather general setting, the minimax rate of nonparametric regression on a generic functional space
is slower than any polynomial of the sample size, which differs markedly from the polynomial
minimax rates for many functional parametric regression procedures, see, e.g., Hall & Keilegom
(2007), and Yuan & Cai (2010) for functional linear regression. These endeavours 1n functional
nonparametric regression do not exploit the intrinsic structure that 1s common 1n practice. For
instance, Chen & Miiller (2012) suggested that functional data often have a low-dimensional
manifold structure which can be utilized for more efficient representation. In this article, we
exploit the nonlinear low-dimensional structure for functional nonparametric regression.

Learnability of convolutional neural networks for infinite dimensional
input via mixed and anisotropic smoothness @

Sho Okumoto, Taiji Suzuki
28 Sept 2021 (modified: 15 Mar 2022) ICLR 2022 Spotlight  Readers: (# Everyone Show Bibtex = Show Revisions




A Non-Parametric Statistical Framework

Au+u=f [HONi{elNi@M An estimation of u

.I.d samples

Random samples {{ . f(x;) + noise) }'_,

Alm The best estimator

Evaluation in Sobolev. norm

: ~ | , : n B
Uniformly good on all Sobolev functions Estimator

/0




A Non-Parametric Statistical Framework

Theorem (informal)
Minimax lower bound for t-order linear elliptic PDE:

Evaluation in Sobolev norm

: . (a —f)
lgfma§ _{(Xi»f(xi)+ﬂ0ise)};¢=1“H({(Xi,f(xi) +NOISe) i) — ||y Z n~d+2
JEH Order of the PDE

04

Very similar to nonparametric rate n d+2«a




A Non-Parametric Statistical Framework

Theorem (informal)
Minimax lower bound for t-order linear elliptic PDE:

Evaluation in Sobolev norm

. : (a—p)
infmax B oo noisey IHU 06 f00) +n0IS@) VL)) = ullyy 2 n™as s
JEH Order of the PDE

Empirical process/fast rate generalization bound

's PINN and DRM statistical optimal?? Artifact of analysis?

NN ansatz? Objective?




Is Deep Ritz Optimal? A Fourier View

Au=f
Solving Au + u = from random samples {(x;, f(x;) + noise)}'_,

Naive way to do this?

Naive Estimator f = Z ff ¢, where ff = Zf (X)) (x;)

|z|<S D
Then u=A"f= ), ——Fi¢. Fourier Basis &
|z|<S ‘Z‘ + 1

Naive Estimator is Optimal ~ with proper selection of §




Is Deep Ritz Optimal? A Fourier View

Au = |
Solving Au + u = from random samples {(x;, f(x;) + noise) }_,

How Is naive estimator

Naive Estimator f = Z ff ¢, where ff — Z f(x) . (x;) different from DRM?

‘Z‘<S q : ?
Then u=A"f= ) fF¢ %
1z|<S ‘Z‘ + 1

DRM Estimator ii = Z it ¢, and plug in

1z]<S

2

Y (Vo + )| — Y alfh

1z|<S 1z|<S

1
af = ar minJ—
5 af ) 2




Is Deep Ritz Optimal? A Fourier View

Au = |
Solving Au + u = from random samples {(x;, f(x;) + noise) }_,

z]<S
Then u =A"'f = Z Pl hﬁ F; — (A)_lle
z|<S

- (2 Vp(x,) quk(x,.)) +
DRM Estimator ii = Z it ¢, and plug in '

10 ) ( 2 & <x>¢k<x>>
1

~F ~F JF K
> 2 MV +)| - ) af Introduce further varignge,

|z|<S 1z|<S

0" = arg minJ
~F

u




Is Deep Ritz Optimal? A Fourier View

Au=f
Solving Au + u = from random samples {(x;, f(x;) + noise)}'_,

DRM discretized

Naive Estimator f = Z ff ¢, where ff = Zf (X)) (x;)

1z| <S

Then u=A"f= ) fF¢

1z| <S ‘Z‘ + 1

4@} Integration by parts
7 Increase the monte-
carlo variance.

DRM Estimator ii = Z it ¢, and plug in

1z]<S

2

Y (Vo + )| — Y alfh

1z|<S 1z|<S

1
af = ar minJ—
5 af ) 2




Results in One Table...

Boundary condition?

Upper Bounds Lower Bound
Objective Function | Neural Network | Fourier Basis
_ 25—2 25—2 25—2
Deep Ritz n d+2s-2 log n N~ d+2s-2 n_ dt2s—4
- _ 25s—2 25—2 25—2
Modified Deep Ritz | n 4252 log n N~ dt2s—4 n_dt2s—4
25—4 2s—14 2s—4
PINN n-d+2s—4 log . n d+2s-3 N di2s—4
|
Still open

o= |
PINN ¢/ DRM




DRM or PINN

Which one optimizes

faster?
@ Y
Q. S o
@

DRM min | | Vu|* — 2uf

Pre-ml Experience:
Double the condition

PINN min |'Azs — f]|? S mber




DRM or PINN

Which one optimizes

faster?
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A Kernelized Model

Machine learning is a kernelized dynamic.
¢ Differential Operator can cancel Kernel Integral Op

Let's consider Au = f via minimizing 3 (f, A1) — (u, Axf)
Deep Ritz Methods. A; = A, Ay, = 1Id f= <(9, Kx>
PINN. A; =A% A, = A

Gradient Descent = db, = Z <6’, A 1Kx,.,-> K, —~fid,K,

l




OU I ReSU It | understand your idea,

but what’s your thm?

" ?
Theorem (Informal) "-

1. The information theoretical lower bound Iin the kernel
space matches the lower bound for learning PDE.

2. Gradient Descent with proper early stopping time
selection can achieve optimal statistical rate

3. The proper early stopping time is smaller for PINN than
DRM




