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Randomized 
Experiment
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A combination of the two discipline?

Differential equation 
modeling

Solving using 
numerical algorithms

Make Useful Prediction

Data Collecting

Machine Learning

And decision making

Causal 
Inference

Randomized 
Experiment

What’s the benefit of 
combining the two approach?5



Two Disciplines in Science

∂u(x, t)
∂t

= F(u, ∇xu, ∇2
xu, ⋯)

Convolutional Filter with 
Moment Conditions

PDE-Net

[Long-Lu-Ma-Dong ICML2018]
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Differential equation 
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Flexible, Accurate

Blackbox
Data intensive
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Machine Learning
Differential equation 
modeling

Solving using 
numerical algorithms

Data Collecting

Machine Learning

Transparent

Lots of approximations
Limits the power

Flexible, Accurate

Blackbox
Data intensive“learning augmented 

algortihm”

Structural Model
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Not Just Differential Equation models

Au = f
Model

Hamilton Jacobi Equation Value Function Reward Function

Incentive Model 
Super-martingale OT Pricing policy/tax Agent Utility Distribution

Boundary ConditionCommittor functionKolomoglov Equation



Current Research

Control and MFG
[Guo-Hu-Xu-Zhang 19][Wang-
Zariphopoulou-Zhou 21][Dai-Gluzman 22]
…

Methodology
[Han-Jentzen-E 18] [Yu-E 18] [Raissi-Perdikaris-
Karniadakis 19] [Sirignano-Spiliopoulos 18] 
[Chen-Hosseini-Owhadi-Stuart 21] [Zang-Bao-Ye-
Zhou 20]…

Auction
[Duetting-Feng-Narasimhan-Parkes-
Ravindranath 19]
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Au = f

Reconstruct the solution   
With observation of :  

u
f {xi, f(xi)}



Current Research
Learn from data pair  {ui, fi}

[Talwai-Shameli-Simchi-Levi 21][de Hoop-Kovachki-Nelsen-
Stuart 21][Li-Meunier-Mollenhauer-Gretton 22]….

[Brunton-Proctor-Kutz 16][Khoo-Lu-Ying 18]
[Long-Lu-Li-Dong 18][Lu-Jin-Pang-Zhang-
Karniadakis 20] [Li-Kovachki-…-Stuart-
Anandkumar 20]

“Operator Learning/Functional data analysis”

Control and MFG
[Guo-Hu-Xu-Zhang 19][Wang-
Zariphopoulou-Zhou 21][Dai-Gluzman 22]
…

Methodology

Theory

Methodology
[Han-Jentzen-E 18] [Yu-E 18] [Raissi-Perdikaris-
Karniadakis 19] [Sirignano-Spiliopoulos 18] 
[Chen-Hosseini-Owhadi-Stuart 21] [Zang-Bao-Ye-
Zhou 20]…

Auction
[Duetting-Feng-Narasimhan-Parkes-
Ravindranath 19]
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Current Research
Reconstruct the solution   
With observation of :  

u
f {xi, f(xi)}

Learn from data pair  {ui, fi}

[Talwai-Shameli-Simchi-Levi 21][de Hoop-Kovachki-Nelsen-
Stuart 21][Li-Meunier-Mollenhauer-Gretton 22]….

[Brunton-Proctor-Kutz 16][Khoo-Lu-Ying 18]
[Long-Lu-Li-Dong 18][Lu-Jin-Pang-Zhang-
Karniadakis 20] [Li-Kovachki-…-Stuart-
Anandkumar 20]

[Brunton-Proctor-Kutz 16] …
[Nickl-Ray 20] [Nickl 20] [Baek-Farias-
Georgescu-Li-Peng-Sinha-Wilde-Zheng 20] 
[Agrawl-Yin-Zeevi 21]…E.g. Drift, Diffusion Strength

“Operator Learning/Functional data analysis”

Control and MFG
[Guo-Hu-Xu-Zhang 19][Wang-
Zariphopoulou-Zhou 21][Dai-Gluzman 22]
…

Methodology

Theory

Methodology
[Han-Jentzen-E 18] [Yu-E 18] [Raissi-Perdikaris-
Karniadakis 19] [Sirignano-Spiliopoulos 18] 
[Chen-Hosseini-Owhadi-Stuart 21] [Zang-Bao-Ye-
Zhou 20]…

Auction
[Duetting-Feng-Narasimhan-Parkes-
Ravindranath 19]
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Au = f

Recover parameter  in model   θ Aθ



Research Overview

Rough 
Modeling

Experiment 
Design

Model 
Learning

Uncertainty 
Quantification

Interaction between model and data
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Au = f

Reconstruct  with 
observation of :  

u
f {xi, f(xi)}

Recover parameter  in 
Model  

θ
Aθ

Learn  the model   from 
data pair  

A
{ui, fi}

Consistency Computation Convergence rate Inference

Interaction between model and data

Today
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Optimal (Linear) Operator Learning

Au = f

Reconstruct  with 
observation of :  

u
f {xi, f(xi)}

Recover parameter  in 
Model  

θ
Aθ

Learn  the model   from 
data pair  

A
{ui, fi}



Khoo Y, Lu J, Ying L. Solving parametric PDE problems with artificial neural networks 
Feliu-Faba J, Fan Y, Ying L. Meta-learning pseudo-differential operators with deep neural networks 
Long Z, Lu Y, Ma X, et al. Pde-net: Learning pdes from data 
Lu L, Jin P, Karniadakis G E. Deeponet: Learning nonlinear operators for identifying differential equations based on the 
universal approximation theorem of operators 
Li Z, Kovachki N, Azizzadenesheli K, et al. Neural operator: Graph kernel network for partial differential equations 

Example: Meta-Modeling

Using learned operator as an  
ansatz to accelerate simulation

Input: 
simulation coefficients

Output: 
simulation result

ui fi

17

Reward function -> Value function 
Climate at time t -> Climate at time t+1



Khoo Y, Lu J, Ying L. Solving parametric PDE problems with artificial neural networks 
Feliu-Faba J, Fan Y, Ying L. Meta-learning pseudo-differential operators with deep neural networks 
Long Z, Lu Y, Ma X, et al. Pde-net: Learning pdes from data 
Lu L, Jin P, Karniadakis G E. Deeponet: Learning nonlinear operators for identifying differential equations based on the 
universal approximation theorem of operators 
Li Z, Kovachki N, Azizzadenesheli K, et al. Neural operator: Graph kernel network for partial differential equations 

Reward function -> Value function 
Climate at time t -> Climate at time t+1

Example: Meta-Modeling

Using learned operator as an  
ansatz to accelerate simulation

Input: 
simulation coefficients

Output: 
simulation result

Fast predictive analytic even when the 
Model exist

18



Aim Learn a mapping from function space to function space

(Linear) Operator Learning

 Can we learn the mapping from infinite 
dimensional space to infinite dimensional 
space?

Data are function pairs {ui, fi}n
i=1

Functional data analysis!

ui fi

19

Let’s first understanding the linear case!



Linear Operator itself is important still…

Learn  via learning the linear operatorp(Y |X)

Distribution is infinite dimensional

20

pin(x) → pout(y) := ∫ p(y |x)pin(x)dx

Distribution of x Distribution of y
Linear operator



Linear Operator itself is important still…

Learn  via learning the linear operatorp(Y |X)

Distribution is infinite dimensional
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pin(x) → pout(y) := ∫ p(y |x)pin(x)dx

Instrumental variable regression 
[Singh-Chernozhukov-Newey 2022] 

Time series modeling 
[Kostic-Novelli-Maurere-Ciliberto-Rosasco-
Pontil 2022] 

Generator/Koopman 
Operator/CME



Linear Operator Learning

22

. 

. 

.

= Learning “infinite-
dimension” matrix

u Randomly sampled

Aim to learn

Data collected

f A



Why infinite dimensional operator is hard
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= Learning “infinite-
dimension” matrix

If every row have O(1) variance, 
The total variance is ∞

[1] Talwai P, Shameli A, Simchi-Levi D.  
AISTAT 2022 
[2] Li Z, Meunier D, A Gretton. Neurips 2022 
[3] de Hoop M V, et al. arXiv:2108.12515



Why infinite dimensional operator is hard
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= Learning “infinite-
dimension” matrix

[1] Talwai P, Shameli A, Simchi-Levi D.  
AISTAT 2022 
[2] Li Z, Meunier D, A Gretton. Neurips 2022 
[3] de Hoop M V, et al. arXiv:2108.12515

Previous Work: 
Assume Fast Eigen Decay 
to ensure finite variance.

Fast Variance Decay 



Why infinite dimensional operator is hard

25

. 

. 

.

= Learning “infinite-
dimension” matrix

y

[1] Talwai P, Shameli A, Simchi-Levi D.  
AISTAT 2022 
[2] Li Z, Meunier D, A Gretton. Neurips 2022 
[3] de Hoop M V, et al. arXiv:2108.12515

Previous Work: 
Assume Fast Eigen Decay 
to ensure finite variance.

Will removing the fast variance decay 
assumption leads to some thing different? 



Direct Discretization may be suboptimal

Although nature is infinite 
dimensional, I can always project it 
to finite dimensional.  Why I should 
care the infinite dimensional 
learning?

  The discretization may 
lead to suboptimal rate!

This Talk

26



Spaces we are interested

Hilbert space have finite variance as finite dimensional space
Eigen decomposition  

          K(x, y) =
∞

∑
n=1

λnen(u)en(v)= λ1 +…

27

Ensures finite variance

Eigen decay λn ∝ n− 1
p
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= a1λ
β/2
1

“Kernel Sobolev space”: larger than RKHS
+ a2λβ/2

2 +…

with (ai)∞
i=1 ∈ ℓ2, β ∈ (0,1)

e1 e2

“slower eigendecay”

Eigen decay λn ∝ n− 1
p

Hβ Fourier expansion



Spaces we are interested

Hilbert space have finite variance as finite dimensional space
Eigen decomposition  

          K(x, y) =
∞

∑
n=1

λnen(u)en(v)= λ1 +…
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= a1λ
β/2
1

“Kernel Sobolev space”: larger than RKHS
+ a2λβ/2

2 +…

with (ai)∞
i=1 ∈ ℓ2, β ∈ (0,1)

e1 e2

β = 0

l2
β = 1

RKHS

Eigen decay λn ∝ n− 1
p

Hβ Fourier expansion



Problem Formulation

Hβ H
Previous Work:
[1] Talwai P, Shameli A, Simchi-Levi D.  AISTATS 2022 
[2] Li Z, Meunier D, A Gretton. Neurips 2022 
[3] de Hoop M V, et al. arXiv:2108.12515

 doesn’t belong to the spaceΔ

Same technique as  for ridge regressionHβ → ℝ

 is a larger spaceHβ



Problem Formulation

Hβ H
Previous Work:
[1] Talwai P, Shameli A, Simchi-Levi D.  AISTATS 2022 
[2] Li Z, Meunier D, A Gretton. Neurips 2022 
[3] de Hoop M V, et al. arXiv:2108.12515

Hγ

How the optimal rate depend on  (output space complexity)? 
Is the previous algorithm still Optimal?

γ



Learn an operator  with bounded  norm 
Respect to  

A* ∥ ⋅ ∥Hβ→Hγ

∥ ⋅ ∥Hβ′�→Hγ′� Hilbert-schmidt norm

Problem Formulation

Hβ Hγ

Hβ′� Hγ′�Evaluation norm
Error( ̂A) = sup

∥f∥
Hβ′�≤1

∥A*f − ̂Af∥Hγ′�



Main Result: Lower bound

33

With N random observations

For all (randomized) estimators , we have ℒ
sup

∥A∥Hβ→Hγ≤1
∥ℒ({ui, fi}N

i=1) − A∥2
Hβ′�→Hγ′� ≳ N− min{ β − β′�

β + p , γ − γ′�
γ }

Learn an operator  with bounded  norm 
Respect to  

A* ∥ ⋅ ∥Hβ→Hγ

∥ ⋅ ∥Hβ′�→Hγ′� Hilbert-schmidt norm



For all (randomized) estimators , we have ℒ
sup

∥A∥Hβ→Hγ≤1
∥ℒ({ui, fi}N

i=1) − A∥2
Hβ′�→Hγ′� ≳ N− min{ β − β′�

β + p , γ − γ′�
γ }

Only input function space

Same rate as previous work 
p : Eigen-decay of RKHS 

Main Result: Lower bound

Only output function space
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Learn an operator  with bounded  norm 
Respect to  

A* ∥ ⋅ ∥Hβ→Hγ

∥ ⋅ ∥Hβ′�→Hγ′�

With N random observations

New Rate in the literature caused by infinite dimensional output

Hilbert-schmidt norm



For all (randomized) estimators , we have ℒ
sup

∥A∥Hβ→Hγ≤1
∥ℒ({ui, fi}N

i=1) − A∥2
Hβ′�→Hγ′� ≳ N− min{ β − β′�

β + p , γ − γ′�
γ }

Only input function space

Main Result: Lower bound

Only output function space
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Reason we introduce the test norm

Learn an operator  with bounded  norm 
Respect to  

A* ∥ ⋅ ∥Hβ→Hγ

∥ ⋅ ∥Hβ′�→Hγ′�

With N random observations

Hilbert-schmidt norm



A magic result, can you explain 
it to me in a simple way?

Main Result: Lower bound
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For all (randomized) estimators , we have ℒ
sup

∥A∥Hβ→Hγ≤1
∥ℒ({ui, fi}N

i=1) − A∥2
Hβ′�→Hγ′� ≳ N− min{ β − β′�

β + p , γ − γ′�
γ }

Learn an operator  with bounded  norm 
Respect to  

A* ∥ ⋅ ∥Hβ→Hγ

∥ ⋅ ∥Hβ′�→Hγ′�

With N random observations

Hilbert-schmidt norm



Operator is an “infinite” dimensional “matrix”

Low frequency  high frequency →

Lo
w

 fr
eq

ue
nc

y 
 h

ig
h 

fre
qu

en
cy

 
→

Higher Variance but Smaller Bias

Consider the matrix view…

Input space

Output space
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What is needed to achieve  learning rateNθ

Low frequency  high frequency →

Lo
w

 fr
eq

ue
nc

y 
 h

ig
h 

fre
qu

en
cy

 
→

Bias Variance Tradeoff

Input space

Output space
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Ignore part 
of the matrix

Learn part 
of the matrix

Bias 
approximation error

Variance

+

“Trade off”

Finite variance



What is needed to achieve  learning rateNθ

Low frequency  high frequency →

Lo
w

 fr
eq

ue
nc

y 
 h

ig
h 

fre
qu

en
cy

 
→

Bias is larger than  Nθ

Optimal shape for Bias Variance Trade Off

Input space

Output space
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What is needed to achieve  learning rateNθ

Low frequency  high frequency →

Lo
w

 fr
eq

ue
nc

y 
 h

ig
h 

fre
qu

en
cy

 
→

Variance is larger than  Nθ

Bias is larger than  Nθ Input space

Output space
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Optimal shape for Bias Variance Trade Off



What is needed to achieve  learning rateNθ

41

No possible algorithm

When  varies, there are three possible casesθ

Optimal shape for Bias Variance Trade Off



What is needed to achieve  learning rateNθ

Low frequency  high frequency →

Lo
w

 fr
eq

ue
nc

y 
 h

ig
h 

fre
qu

en
cy

 
→

Variance is larger than  Nθ

Bias is larger than  Nθ

Orange line should always dominate the Blue Line

Rate determined 
by output space

Rate determined 
by input space

Input space

Output space
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N− γ − γ′�
γ

N− β − β′�
β + p

Optimal shape for Bias Variance Trade Off



Low frequency  high frequency →

Lo
w

 fr
eq

ue
nc

y 
 h

ig
h 

fre
qu

en
cy

 
→

What is the OPTIMAL machine learning algorithm?

A ridge-regression/
Discretization(PCA-Net) is 
learning a rectangular

Rectangular covering the blue part 
without touching the orange part

Optimal Algorithm

43

Input space

Output space



Low frequency  high frequency →
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→

Multilevel Training

Only  level is neededO(ln ln N)

What is the OPTIMAL machine learning algorithm?

Optimal Algorithm

Input space

Output space
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∑
j≤γi

ρj fj ⊗ ρj fj ĈLK(ĈKK + λ(K)
i I)−1

Ridge regression
Projection to certain basis in output space

Rectangular covering the blue part 
without touching the orange part



Low frequency  high frequency →
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→

Multilevel Training

Only  level is neededO(ln ln N)

What is the OPTIMAL machine learning algorithm?

Optimal Algorithm

reduce the bias while 
control the variance

Input space

Output space
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∑
j≤γi

ρj fj ⊗ ρj fj ĈLK(ĈKK + λ(K)
i I)−1

Ridge regression
Projection to certain basis in output space

Rectangular covering the blue part 
without touching the orange part



Low frequency  high frequency →

Lo
w

 fr
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 h
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h 

fre
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cy

 
→

Optimal Algorithm Changed…

reduce the bias while 
control the variance

Output space
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Low frequency  high frequency →

Indeed Finite 
variance

Ridge regression

Previous Works
[1] Talwai P, Shameli A, Simchi-Levi D.  AISTATS 2022 
[2] Li Z, Meunier D, A Gretton. Neurips 2022 
[3] de Hoop M V, et al. arXiv:2108.12515



Low frequency  high frequency →

Lo
w

 fr
eq

ue
nc

y 
 h

ig
h 

fre
qu

en
cy

 
→

Multilevel Training
What is the OPTIMAL machine learning algorithm?

Optimal Algorithm

What if the two lines coincide?

Input space

Output space
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Output space             Input space 
Learning rate             learning rate

=
β − β′�

β + p
γ − γ′�

γ



Low frequency  high frequency →

Lo
w

 fr
eq

ue
nc

y 
 h

ig
h 

fre
qu

en
cy

 
→

Only  level is neededO(ln N)

What is the OPTIMAL machine learning algorithm?

Optimal Algorithm

What if the two lines coincide?

constant time

Multilevel Training

Input space

Output space
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Matches Empirical Using

https://arxiv.org/pdf/2212.12794.pdf

49

Coarse grid Fine grid

Fast reconstruction of hierarchical matrix/
Green function Linear Case
[Lin-Lu-Ying 11][Boullé-Kim-Shi-Townsend 
22] [Schäfer-Owhadi 21]… 

Multi-level Machine Learning 
[Lye-Mishra-Molinaro 21][Li-Fan-Ying 21]



ICLR Statistics

Ranked top 4/4126 in all ICLR 2023 submissions 
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Take home message

Learning in infinite dimensional space is hard due to the 
infinite variance 

The hardness of learning a linear operator is determined 
by the harder part between the input and output space 
(In some cases, infinite variance will not leads to slower rate) 

Single level ML leads to sub-optimal rate, multi-level is 
needed. 
(Matches empirical use)



Current Research
Can we reconstruct   
With observation of :  

u
f {xi, f(xi)}

Learn from data pair  {ui, fi}

[Talwai-Shameli-Simchi-Levi 21][de Hoop-Kovachki-Nelsen-
Stuart 21][Li-Meunier-Mollenhauer-Gretton 22]….

[Brunton-Proctor-Kutz 16][Khoo-Lu-Ying 18]
[Long-Lu-Li-Dong 18][Lu-Jin-Pang-Zhang-
Karniadakis 20] [Li-Kovachki-…-Stuart-
Anandkumar 20]

Recover parameter  in Model   θ 𝒜θ

[Brunton-Proctor-Kutz 16] …
[Nickl-Ray 20] [Nickl 20] [Baek-Farias-
Georgescu-Li-Peng-Sinha-Wilde-Zheng 20] 
[Agrawl-Yin-Zeevi 21]…E.g. Drift, Diffusion Strength
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Control and MFG
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…

Methodology

Theory

Methodology
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Auction
[Duetting-Feng-Narasimhan-Parkes-
Ravindranath 19]
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Au = f

[Jin-Lu-Blanchet-Ying 23]
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Au = f

[Jin-Lu-Blanchet-Ying 23]

Is direct (plug-in) estimator optimal?
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Can we reconstruct   
With observation of :  

u
f {xi, f(xi)}

Control and MFG
[Guo-Hu-Xu-Zhang 19][Wang-
Zariphopoulou-Zhou 21][Dai-Gluzman 22]
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Au = f

Main Idea
Change solving the model to  
solving a minimization problem 
Example: Δu = f
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Main Idea
Change solving the model to  
solving a minimization problem 
Example: Δu = f

Design a criteria of whether the model 
have been solved1

∫ |∇u(x) |2 − 2u(x)f(x)dx ∫ (Δu − f )2dx

Sample Average Approximation+ML2
[DRM] [DGM, PINN, …]
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Main Idea
Change solving the model to  
solving a minimization problem 
Example: Δu = f

∫ |∇u(x) |2 − 2u(x)f(x)dx ∫ (Δu − f )2dx

[Lu-Chen-Lu-Ying-Blanchet ICLR22]  
 Direct Sample Average Approximation is not 
optimal for all criteria. 

optimalsub-optimal

“Fast rate generalization bound”
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Main Idea
Change solving the model to  
solving a minimization problem 
Example: Δu = f

∫ |∇u(x) |2 − 2u(x)f(x)dx ∫ (Δu − f )2dx

[Lu-Blanchet-Ying Neurips22] analysis the 
optimization dynamic. 

Faster“implicit Sobolev acceleration”

Using sobolev norm as loss function  
can accelerate optimization
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Main Idea
Change solving the model to  
solving a minimization problem 
Example: Δu = f

∫ |∇u(x) |2 − 2u(x)f(x)dx ∫ (Δu − f )2dx

Pre-ml Experience： 
Double the condition 
number 
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Main Idea
Change solving the model to  
solving a minimization problem 
Example: Δu = f

∫ |∇u(x) |2 − 2u(x)f(x)dx ∫ (Δu − f )2dx

f = ⟨θ, Kx⟩
“Differential operator preconditions the kernel 
integral operator”



Insight for Selecting Algorithm

I don’t care theory, what 
can you tell me?

All the gap is n
1

d + s

S is the smoothness



Research Overview

Rough 
Modeling

Experiment 
Design

Model 
Learning

Uncertainty 
Quantification

Interaction between model and data
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Au = f

Reconstruct  with 
observation of :  

u
f {xi, f(xi)}

Recover parameter  in 
Model  

θ
Aθ

Learn  the model   from 
data pair  

A
{ui, fi}

Consistency Computation Convergence rate Inference



Questions that I want to address…

Is all the model learnable?

DRO+ /epi-convergence based stability  
result in infinite dimensional

Γ
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Statistical Consistency



Is direct (plug-in) estimator optimal?

Is all the model learnable?

DRO+ /epi-convergence based stability  
result in infinite dimensional

Γ

- Infinite dimensional - integration by parts
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Statistical Consistency

Convergence Rate

Questions that I want to address…



Is direct (plug-in) estimator optimal?

Is all the model learnable?

Is random sampling the best experiment? 
How can we compute the best experiment?

DRO+ /epi-convergence based stability  
result in infinite dimensional

Γ

Spectral methods for optimal 
experiment design

- Infinite dimensional - integration by parts
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Statistical Consistency

Experiment Design

Convergence Rate

Questions that I want to address…



Is direct (plug-in) estimator optimal?

Is all the model learnable?

Is random sampling the best experiment? 
How can we compute the best experiment?

How can we do the fast UQ?

DRO+ /epi-convergence based stability  
result in infinite dimensional

Γ

Spectral methods for optimal 
experiment design

Fast bootstrapping using model 
information

- Infinite dimensional - integration by parts
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Statistical Consistency

Experiment Design

Inference

Convergence Rate

Questions that I want to address…



67

Research Overview

(Deep) Learning Theory and Practice
Control based DL Thoery:[Lu-Zhong-Li-Dong ICML 18] [Zhang-Zhang-Lu-Zhu-
Dong Neurips 19]  [Lu et al ICML 20]  “Neural ODE” 
 DL Theory: [Ji-Lu-Zhang-Dengt-Su ICLR 21] [Zhang-Yu-Lu-He AISTAT 23]

Optimal Experiment Design
[Lu-Li-Ying-Blanchet  arXiv 22]“spectral method” 
On going: Numerical linear algebra, Frank-Wolfe 
Methods,…

Theoretical Support
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Research Overview

(Deep) Learning Theory and Practice
Control based DL Thoery:[Lu-Zhong-Li-Dong ICML 18] [Zhang-Zhang-Lu-Zhu-
Dong Neurips 19]  [Lu et al ICML 20]  “Neural ODE” 
 DL Theory: [Ji-Lu-Zhang-Dengt-Su ICLR 21] [Zhang-Yu-Lu-He AISTAT 23]

Optimal Experiment Design
[Lu-Li-Ying-Blanchet  arXiv 22]“spectral method” 
On going: Numerical linear algebra, Frank-Wolfe 
Methods,…

+Differential equation modeling

Theoretical Support

StatisticsNumerics

interdisciplinary research

Theory “Fast rate generalization bound”+”Kernel Analysis”
[Lu-Chen-Lu-Ying-Blanchet ICLR 22] [Lu-Blanchet-Ying Nuerips 22] 
[Ji-Lu-Blanchet-Ying ICLR 23] 

Methodology 
[Long-Lu-Ma-Dong ICML 18] [Long-Lu-Dong JCP 19] [Zhang-Lu-
Liu-Dong ICLR 19]

Optimization
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What is the OPTIMAL machine learning algorithm?

Optimal Algorithm

reduce the bias while 
control the variance

Output space
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Ridge regression

Projection to certain basis in output space
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Ridge regression

Projection to certain basis in output space
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Ensemble different levels
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Long Z, Lu Y, Ma X, et al. Pde-net: Learning pdes from data  
International Conference on Machine Learning. PMLR, 2018: 3208-3216.

∂u(x, t)
∂t

= F(u, ∇xu, ∇2
xu, ⋯)

Convolutional kernel 
“Finite-difference”

Neural Network
ux = u * [−1,1]

Algorithmic Literature Overview
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Open Problems: Nonlinear-Operator-Learning

Standard non-parametric rate: n− 2s
d + 2s

“dimension”
d = ∞



A Non-Parametric Statistical Framework

Δu + u = f Output

Input

Aim

An estimation of u

Random samples {(xi, f(xi) + noise)}n
i=1

i.i.d samples

The best estimator
inf
H

max
f∈Hα

𝔼{(xi,f(xi)+noise)}n
i=1

∥H({(xi, f(xi) + noise)}n
i=1) − u∥Hβ

Uniformly good on all Sobolev functions Estimator

Evaluation in Sobolev norm

“Learning with gradient information"
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A Non-Parametric Statistical Framework

Order of the PDE
inf
H

max
f∈Hα

𝔼{(xi,f(xi)+noise)}n
i=1

∥H({(xi, f(xi) + noise)}n
i=1) − u∥Hβ ≳ n− (α − β)

d + 2α − 2t

Evaluation in Sobolev norm

Theorem (informal)  
Minimax lower bound for t-order linear elliptic PDE:
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Very similar to nonparametric rate n− α
d + 2α
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Is PINN and DRM statistical optimal?
For β = 2

PINN 

Artifact of analysis? 
NN ansatz? Objective?

For β = 1
DRM 

Empirical process/fast rate generalization bound



Is Deep Ritz Optimal? A Fourier View

Solving   from random samples Δu + u = f {(xi, f(xi) + noise)}n
i=1

Naive way to do this?
Why not first learn  then learn f u
Naive Estimator  where  

Then  

̂f = ∑
|z|<S

̂fF
z ϕz

̂fF
z = ∑ f(xi)ϕz(xi)

u = A−1f = ∑
|z|<S

1
|z |2 + 1

̂fF
z ϕz

Naive Estimator is Optimal with proper selection of S

Fourier Basis

Au = f
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Solving   from random samples Δu + u = f {(xi, f(xi) + noise)}n
i=1

How is naive estimator 
different from DRM?

Why not first learn  then learn f u
Naive Estimator  where  

Then  
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|z|<S

̂uF
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̂uF = arg min
̂uF ∫

1
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|z|<S

̂uF
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− ∑
|z|<S

̂uF
z

̂fF
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z =

̂fF
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|z |2 + 1
̂uF
z = ( ̂A)−1 ̂fF

z

DRMNaive

̂A = (∑
i

∇ϕj(xi)∇ϕk(xi))
j,k

+

Introduce further variance
(∑

i

ϕj(xi)ϕk(xi))
j,k

Au = f
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|z|<S
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DRM discretized 
 

But not 
∇ ⋅ ∇

Δ
Integration by parts 
increase the monte-
carlo variance.

Au = f



Results in One Table…

Still open

For β = 2
PINN DRM 

DRM Modified
Spectral
NN

For β = 1

Boundary condition?



DRM or PINN
Which one optimizes 

faster?
DRM   

PINN 

min ∫ |∇u |2 − 2uf

min ∥Δu − f∥2
Pre-ml Experience： 
Double the condition 
number 



DRM or PINN

Sobolev Training Solving Δu = f
f = sin(2πx) f = sin(4πx)

DRM   

PINN 

min ∫ |∇u |2 − 2uf

min ∥Δu − f∥2
Pre-ml Experience： 
Double the condition 
number 

Which one optimizes 
faster?



A Kernelized Model

Machine learning is a kernelized dynamic.
Differential Operator can cancel Kernel Integral Op

f = ⟨θ, Kx⟩

Gradient Descent dθt = ∑
i

⟨θ, 𝒜1Kxii⟩ Kxi
− fi𝒜2Kxi

Kernel integral operatorDifferential operator



Our Result I understand your idea, 
but what’s your thm?

Theorem (Informal)

1. The information theoretical lower bound in the kernel 
space matches the lower bound for learning PDE.

2. Gradient Descent with proper early stopping time 
selection can achieve optimal statistical rate

3. The proper early stopping time is smaller for PINN than 
DRM


