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Course notes adapted from N. Hammoud’s NYU lecture notes.






Example: Find the best-fit line through the points (0,6), (1,0), and (2,0).
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Let A be an m X n matrix.

Definition
A least squares solution to Az = b is a vector Z in R" such that

1b — Az|| < [|b — Ax||

for all x in R"™.

b e //A/ v
Note that b — A% A

is in (Col A)*L. b— Az ///
\T/ Col A
l

AT =b = projay 4(b)

In other words, a least squares solution = solves Ax = b as closely as
possible.

Equivalently, a least squares solution to Az = b is a vector = in R" such
that R
AZL'\ — b — prOjColA(b).

This is because b is the closest vector to b such that AZ = b is consistent.



Theorem
The least squares solutions to Ax = b are the solutions to

(ATA)z = A"b.

This is just another Az = b problem, but with a square matrix AT Al
Note we compute Z directly, without computing b first.

Theorem
Let A be an m x n matrix. The following are equivalent:

1. Ax = b has a unique least squares solution for all b in R".
2. The columns of A are linearly independent.
3. AT A is invertible.

In this case, the least squares solution is (A7 A)~!(ATbD).



Least Squares Solution — Yesterday’s Example

Find the least squares solutions to Ax = b where:

1 0 6
1 2 0
We have
1 0
1 1 1 3 3
ATA:( ) 1 1 :( )
0O 1 2 (1 2) 3 5
and
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So the only least squares solution is * = ( )

Row reduce:



How close did we get?

R 1 0
b=Az=[(1 1
1 2

The distance from b is

()-C)

16— AZ|| =

-|3)




4 0 2
Example: Find the least squares solutionto |0 2|2 = [0 |.
1 1 11



Find the least squares solution to
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e Thm Correlation=R2 square when we only 1 feature to do linear regression



Correlation Matrix of Scores

Total Score

1: Exercise 1 (20.0 pts)

2: Exercise 2 (20.0 pts) -

3: Exercise 3 (20.0 pts)

- 0.6
4: Exercise 4.1-4.3 (15.0 pts) -

5: Exercise 4.4 (5.0 pts) - 0.62

6: Exercise 5 (10.0 pts) -

7: Exercise 6 (10.0 pts)
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3D Plot of Linear Regression: Total Score vs Exercise Scores 3D Plot of Linear Regression: Total Score vs Exercise Scores
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Try to Design a Linear Algebra Test using Linear Algebra

feature_columns = ['1l: Exercise 1 (20.0 pts)', '2: Exercise 2 (20.0 pts)',
'3: Exercise 3 (20.0 pts)', '4: Exercise 4.1-4.3 (15.0 pts)',
'5: Exercise 4.4 (5.0 pts)', '6: Exercise 5 (10.0 pts)’',
'7: Exercise 6 (10.0 pts)']

X_features = scores_data[feature_columns]

y_total_score = scores_data['Total Score']

scaler

= StandardScaler() Lasso:
X_scaled =

scaler.fit_transform(X_features)

best linear fit with possible fewer entries

X_train, X_test, y_train, y_test = train_test_split(X% scaled, y_total_score, test_size=0.2, random_state=42)

itting the Lasso r Larger alpha leads to more zeros!
lasso = Lasso(alpha=5)
lasso.fit(X_train, y_train) (Means less problems in exam can know
e Your’s status of learning!)

lasso_coefficients = lasso.coef_

coéfficiéntg_df = pd.DataFrame({'Feature': feature_columns, 'Coefficient': lasso_coefficients})
coefficients_df
Feature Coefficient [
1: Exercise 1 (20.0 pts) 0.324832 m
2: Exercise 2 (20.0 pts) 0.000000
3: Exercise 3 (20.0 pts) 3.082411
4: Exercise 4.1-4.3 (15.0 pts) 1.556173
5: Exercise 4.4 (5.0 pts) 0.000000
6: Exercise 5 (10.0 pts) 1.712245

7: Exercise 6 (10.0 pts) 2.447044




Try to Design a Linear Algebra Test using Linear Algebra

feature_columns = ['1l: Exercise 1 (20.0 pts)', '2: Exercise 2 (20.0 pts)’',
'3: Exercise 3 (20.0 pts)', '4: Exercise 4.1-4.3 (15.0 pts)',
'S: Exercise 4.4 (5.0 pts)', '6: Exercise 5 (10.0 pts)’,
'7: Exercise 6 (10.0 pts)']

X_features = scores_data[feature_columns]

y_total_score = scores_data['Total Score']

scaler

= StandardScaler()
X_scaled =

scaler.fit_transform(X_features) Lasso:

best linear fit with possible fewer entries

X_train, X_test, , y_test = train_test_split(X_scaled, y_total_score, test_size=0.2, random_state=42)

lasso = Lasso(alpha=10) Larger alpha leads to more zeros!
lasso.fit(X_train, y_train)

R (Means less problems in exam can know
lasso_ﬁoefficients - iasso.coef_ Your's status Of Iearning!)

coefficiéhts;_df = bd. DéféFrame( {'Feature': feature_columns, 'Coefficient': lasso_coefficients})
coefficients_df
Feature Coefficient
1: Exercise 1 (20.0 pts) 0.000000
2: Exercise 2 (20.0 pts) 0.000000
3: Exercise 3 (20.0 pts) 0.698581
4: Exercise 4.1-4.3 (15.0 pts) 0.000000
5: Exercise 4.4 (5.0 pts) 0.000000
6: Exercise 5 (10.0 pts) 0.000000

7: Exercise 6 (10.0 pts) 0.883778




Coefficients

Try to Design a Linear Algebra Test using Linear Algebra

Lasso Path: Coefficients as a function of the regularization
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Exercise 3 and 6 are most important

Gmall alphaj

Elimination with parameterized matrix
Find complete solution of Ax=b

Large alphaj
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Lasso Path: Coefficients as a function of the regularization
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Total Score

1: Exercise 1 (20.0 pts) -

2: Exercise 2 (20.0 pts) -

3: Exercise 3 (20.0 pts) -

4: Exercise 4.1-4.3 (15.0 pts)

5: Exercise 4.4 (5.0 pts) -

6: Exercies 5 (10.0 pts)

7: Exercise 6 (10.0 pts) -

0.48

Correlation Matrix of Scores
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Find the best fit ellipse for the points (0,2), (2,1), (1,—1), (—1,—-2),
(_3a 1)'

The general equation for an ellipse is

2° + Ay’ + Bey+ Cx+Dy+E =0



Find the best fit ellipse for the points (0,2), (2,1), (1,—1), (—1,—2),
(—3,1).

The general equation for an ellipse is

2° + Ay’ + Bey+ Cx+Dy+E =0

So we want to solve:

0> + A2+ BO)(2)+ C(0)+ D2)+E=0
2+ A(L)*+ BR)1)+ C@2)+ DL +E=0
(1) + A(-1)* + B()(-1)+ CQA)+D(-1)+E=0
(—=1)? + A(=2)> + B(=1)(-2) + C(-1) + D(-2) + E =0
(=32 4+ A(1)*+ B(-3)(1)+C(-3)+ D)+ E =0



Find the best fit ellipse for the points (0,2), (2,1), (1,—1), (—1,—-2),
(_37 1)'

The general equation for an ellipse is

° + Ay’ + Bey+Cx+Dy+E =0

So we want to solve:

0> + A2+ BO)(2)+ C(0)+ D2)+E=0
2+ A(L)*+ BR)1)+ C@2)+ DL +E=0
(1) + A(-1)* + B()(-1)+ CQA)+D(-1)+E=0
(—=1)? + A(=2)> + B(=1)(-2) + C(-1) + D(-2) + E =0
(=32 4+ A(1)*+ B(-3)(1)+C(-3)+ D)+ E =0

In matrix form:

4 0 0 2 1\ /A 0
1 2 2 1 1\ (B\ /—4\
1 -1 1 -1 1|]|c]|=]-
4 2 -1 2 1]||D 1
\1 =3 -3 1 1) \g) \o9
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) ATy

1 0 0 0 0] 16/7

0O 1 0 0 0| —8/7
wws [0 0 1 0 0| 15/7
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Row reduce:

—18
18
19

—10

—15

11
0
-1
1

5

1

1
—4
0
11

6 —4
18 10
10 15
—4 0

0 -1

35
6
—4
1
11

|



Row reduce:

35 6 —4 1 11 | —18 1 0 0 0 O 16/7
6 18 10 -4 0 18 O 1 0 0 O —8/7
—4 10 15 0 -1 199 wwws 10O 0 1 0 O 15/7
1 -4 0 11 1] -10 0 0 0 1 0| —6/7
11 0o -1 1 5 | —15 0O 0 0 0 1| -=52/7
Best fit ellipse:
16 8 15 6 52
x2+—2——:cy+—x—— —— =0

7 7 7 7 7

or
72”4+ 16y° — 8xy + 15z — 6y — 52 = 0.



(0,2) \\
(_/3,0}/ /0(2, 1)
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e

f\

\ (_17_2)/

7x% 4+ 16y* — 8zy + 15z — 6y — 52 =0

Remark: Gauss invented the method of least squares to do exactly this: he
predicted the (elliptical) orbit of the asteroid Ceres as it passed behind the
sun in 1801.



Non-linear decision
boundary

Input space Feature space

(ATA)IATD



