Linear Algebra

Midterm Sample Question

Yiping Lu

January 2024

Exercise True or False? In both cases, explain clearly.

- Every Diagnoal matrix is an invertible matrix. No
- An upper traingular matrix times an upper traingular matrix is a upper traingular matrix. Yes
- The inverse of a permutation matrix is also a permutation matrix. Yes
- The transpose of an ellimination matrix is also a an ellimination matrix. Yes
- If A and B are elimination matrix, then $A B=B A$. No
- Only symmetric matrix have a LDL decomposition. Yes
- The LU decomposition of a matrix is unique No
- The inverse of upper traingular matrix is lower traingular matrix No
- An Elimination matrix times an Elimination matrix matrix is stil an Elimination matrix. No
- Every invertible matrix is a square matrix. Yes
- $E_{21} E_{32} A$ means change Row 2 of matrix A by linear combination of Row 2 and Row 1 and then change Row 3 by linear combination of Row 3 and Row 2. No
- $\left\{\left.\left[\begin{array}{c}x \\ x+2 y\end{array}\right] \right\rvert\, 3 x+2 y=0\right\}$ is a vector space. Yes
- $\left\{\left.\left[\begin{array}{c}x \\ x+2 y+1\end{array}\right] \right\rvert\, 3 x+2 y=0\right\}$ is a vector space. No
- All 3 by 3 matrices with the column vector $(1,1,1)$ in their column space forms a vector space. No
- The set of all polynomials of degree less than 3 forms a vector space. This means any polynomial that can be written in the form $a x^{2}+b x+c$, where a, b and c are constants (which can include zero), belongs to this vector space. Yes
- A is an invertible matrix then $A^{-1} A^{\top} A^{2}$ is also invertible. Yes, the inverse matrix is $A^{-2}\left(A^{-1}\right)^{-\top} A$
- For a matrix $A \in \mathbb{R}^{4 \times 5}$, the largest possible rank of A is 5 . No
- For a matrix $A \in \mathbb{R}^{4 \times 5}$ there are possibility that linear system $A x=b$ have one and only have one solution. No
- For a matrix $A \in \mathbb{R}^{4 \times 5}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have one and only have one solution. No
- For a matrix $A \in \mathbb{R}^{4 \times 3}, \operatorname{rank}(A)=3$. There are possibility that linear system $A x=b$ have one and only have one solution. Yes
- For a matrix $A \in \mathbb{R}^{5 \times 4}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have one and only have one solution. Yes
- For a matrix $A \in \mathbb{R}^{4 \times 5}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have no solution. No
- For a matrix $A \in \mathbb{R}^{5 \times 4}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have no solution. Yes
- The exist matrixs A and matrix $B, \operatorname{rank}(A)=3$ and $\operatorname{rank}(A B)=4$. No
- $\left\{\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{c}1 \\ -1 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 2 \\ 3\end{array}\right]\right\}$ is a basis of \mathbb{R}^{3}. No
- The column vectors of a full column rank $m \times n$ matrix is a basis of \mathbb{R}^{m}. No
- The column vectors of a full row rank $m \times n$ matrix is a basis of \mathbb{R}^{m}. No
- The complete solution of linear system $A x=b$ is $\vec{x}=\left[\begin{array}{l}0 \\ 2 \\ 3 \\ 1 \\ 2\end{array}\right]+x_{1}\left[\begin{array}{c}1 \\ 0 \\ 2 \\ -1 \\ 1\end{array}\right]+$ $x_{2}\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]$, then $\operatorname{dim}(\operatorname{col}(A))=3$ Yes
- All symmetric matrix $A \in \mathbb{R}^{3 \times 3}$ forms a vector space whose dimension is 6. Yes
- Suppose the matrices A and B have the same column space, then A and B have the same nullspaces. No
- Matrices A and its row echelon form always have the same column space. No
- If two $m \times n$ matrices A and B have the same 4 fundamental spaces, then $A=B$. No
- Suppose A and B have the same column space, then A and B have the same rank. Yes
- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\top}\right)$ Yes
- There exist a matrix A whose column space is spanned by $(1,2,3)$ and $(1,0,1)$ and whose nullspace is spanned by $(1,2,3,6)$ No, The dimensions of such a matrix must be 3 by $4(m=3$ and $n=4)$. The dimension of the column space is 2 , because the given vectors are independent. That means the dimension of the nullspace must be $4-2=2$. The null space cannot be spanned by 1 vector.
- $Y=A X$ and A is an invertible matrix, then $\operatorname{rank}(Y)=\operatorname{rank}(X)$. Yes, because $Y=A X$ so $\operatorname{rank}(Y) \leq \operatorname{rank}(X)$. For A is invertible matrix, so $X=A^{-1} Y$ which tells us $\operatorname{rank}(X) \leq \operatorname{rank}(Y)$. The only possiblity is $\operatorname{rank}(Y)=\operatorname{rank}(X)$

Questions

- Compute Angle, matrix product, inverse matrix, LU decomposition, LDU decomposition, complete solution
- Compute the rank of the four subspaces

