Recap and Fundamental Theorem of Linear Algebra.
\qquad same $\operatorname{Row}(A) \subseteq \mathbb{R}^{n}$ span \{all m now Vectors \}

$$
N u \mid(A) \subseteq \mathbb{R}^{n+\text { Same }}
$$

$$
\left\{x\left\{\text { all solution of } A_{x}=0\right\}\right.
$$

$$
\operatorname{Nul}\left(A^{\top}\right) \subseteq \mathbb{R}^{m}
$$

$$
\left\{y \mid a l l \text { solution of } A^{\top} y=0\right\}
$$

left Null space
"left Jul space"

$$
\left(A^{\top} y\right)^{\top}=y^{\top} A
$$

$\Delta \in \mathbb{R}^{m \times u} . \quad \operatorname{rank}(A)=r$
m rows and n columns
$A x=b$ have m Ep n Variable
$A^{\top} \in \mathbb{R}^{n \times m}$, $A^{\top} y=b$ have n Eq and m variable
Geometry Meaning of

$$
\operatorname{dim}(\operatorname{Row}(A))+\operatorname{dim}(\operatorname{Nu} \mid(A))=n \quad \text { The Solution } \vec{x} \text { slate ortbogal to all }
$$

Let's wite down A using row Representation

$$
\left.A x=0 \quad \Leftrightarrow\left[\begin{array}{cc}
\vec{r}_{1}^{\top} \\
\vec{r}_{i}^{\top} \\
\vdots \\
r_{m}^{\top}
\end{array}\right] \begin{array}{c}
\vec{x} \\
\vec{x} \in \mathbb{R}^{n} \\
\end{array}\right]\left[\begin{array}{c}
\vec{n} \cdot \vec{x} \\
\vec{r} \cdot \vec{x} \\
\vdots \\
r_{m} \cdot \vec{x}
\end{array}\right]=0
$$

$$
\begin{array}{cc}
\vec{n} \cdot \vec{x}=0 & \overrightarrow{r_{1}} \perp \vec{x} \\
\overrightarrow{r_{2}} \cdot \vec{x}=0 & \overrightarrow{r_{n}} \perp \vec{x} \\
\vdots & \vdots \\
\overrightarrow{r_{m}} \cdot \vec{x}=0 & \overrightarrow{r_{m}} \perp \vec{x}
\end{array}
$$

$\vec{n} \ldots \vec{r}_{m}$ all all now vectors $\vec{n} \in \mathbb{R}^{n}!!$

Example if $\operatorname{Row}(A), \operatorname{Na} \mid(A) \subseteq \mathbb{R}^{2} \quad n=3$

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right]_{y \text {-axis all solution- of } A x=0} \text { is } x=\left[\left.\left(\begin{array}{l}
0 \\
0 \\
x_{3}
\end{array}\right) \right\rvert\, x_{3} \in \mathbb{R}\right\} \\
& N_{0 w}(A)=x \text {-y place } \\
& \operatorname{NuI}(A)=z \text {-axis }
\end{aligned}
$$

Similarity, $\quad \operatorname{Nu}\left(A^{\top}\right)=(\operatorname{Col}(A))^{\perp}$

$$
\begin{aligned}
& \operatorname{dim}\left(\operatorname{NuI}\left(A^{\top}\right)\right)=m-n
\end{aligned}
$$

Linear Algebra
Midterm Review Question
Piping Lu
January 2024

Exercise Consider the matrix:

$$
A=\left[\begin{array}{lllll}
1 & 3 & 5 & 0 & 7 \\
0 & 0 & 0 & 1 & 2 \\
1 & 3 & 5 & 1 & 9
\end{array}\right]
$$

Elimination!

- Write down $A=L U$ where L is an lower traingular matrix and U is a REF. Same as $L U^{-} \rightarrow$ REF

$$
\begin{aligned}
& \text { - Calculate the four fundamental subspaces } \\
& E_{32} E_{31} A=u \quad A=\left(E_{22} E_{31}\right)^{-1} u=E_{31}^{-1} E_{32}^{-1} A \\
& \uparrow \\
& \rightarrow \text { Aliminote Sol } \\
& \text { fin Eliminate fin Gl } \\
& L=E_{31}^{-1} E_{32}^{-1}=\left[\begin{array}{lll}
1 & 1 & 1 \\
\text { (1) } & \text { (1) } & 1
\end{array}\right] \begin{array}{l}
\text { !! You fold follow My order of } \\
\text { Method if you wait to aby it. }
\end{array} \\
& \text { Method. if you want to copy it. } \\
& L=\left[\begin{array}{lll}
-1 & & \\
1 & 1 & 1
\end{array}\right] \\
& u=\left[\begin{array}{lllll}
1 & 3 & 5 & 0 & 7 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0 \\
& x_{2} & x_{3} & & x
\end{array}\right] \\
& A=\left[\begin{array}{lllll}
1 & 3 & 5 & 0 & 7 \\
0 & 0 & 0 & 1 & 2 \\
1 & 3 & 5 & 1 & 8
\end{array}\right]
\end{aligned}
$$

Make sure to shack wetter $2 U=A$
1.

$$
\begin{aligned}
& \operatorname{Row}(A)=\operatorname{Row}(U)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
3 \\
5 \\
0 \\
7
\end{array}\right],\right. {\left.\left[\begin{array}{l}
0 \\
0 \\
0 \\
2
\end{array}\right]\right\} } \\
& \text { Goy the pivot rows!!! }
\end{aligned}
$$

2. $\operatorname{Nu}|(A)=\operatorname{Nu}|(u) \quad x_{2}, x_{3}, x_{5}$ are free

Fino Solve the Eq Solve $x_{1} . x_{4}$

$$
\begin{aligned}
& =x_{1}=-3 x_{2}-5 x_{3}-7 x_{5} \\
& =x_{4}=-2 x_{5}
\end{aligned}
$$

Then write down in vector Form

$$
\begin{aligned}
\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2} \\
x_{4} \\
x_{5}
\end{array}\right) & =\left(\begin{array}{c}
-3 x_{2}-5 x_{5}-7 x_{5} \\
x_{2} \\
x_{3} \\
-2 x_{5} \\
x_{5}
\end{array}\right) \text { free } \\
& =x_{2}\left(\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right)+x_{3}\left(\begin{array}{c}
-5 \\
0 \\
1 \\
0 \\
0
\end{array}\right)+x_{5}\left(\begin{array}{c}
-7 \\
0 \\
0 \\
-2 \\
1
\end{array}\right)
\end{aligned}
$$

Exercise 1. all the possible rank of

$$
\left[\begin{array}{lll}
1 & 1 & a \\
3 & 3 & a \\
a & a & a
\end{array}\right] \quad \leftarrow \text { by your self }
$$

when a varies.
2. all the possible rank of

$$
\left[\begin{array}{lll}
1 & 3 & a \\
3 & 1 & a \\
a & a & a
\end{array}\right]
$$

when a varies.

$$
\begin{aligned}
& \text { Elimination R2fRL-3R1 } \\
& \begin{array}{c}
\text { Check if this will be } 0 \\
\text { ere } \& \neq 0
\end{array} \\
& \left(\begin{array}{ccc}
1 & 3 & a \\
3 & 1 & a \\
a & a & a
\end{array}\right) \xrightarrow[\substack{\text { don't divide } \\
\text { by zen }}]{\substack{*}} \xrightarrow{R 2 \in R 2-a R 1}\left(\begin{array}{ccc}
1 & 3 & a \\
0 & -8 & -2 a \\
0 & -2 a & a-a^{2}
\end{array}\right) \\
& \xrightarrow{R J \in R J-\frac{a}{4} R I}\left(\begin{array}{ccc}
1 & 1 & a \\
0 & -8 & -2 a \\
0 & 0 & a-\frac{a^{2}}{2}
\end{array}\right) \quad\left\{\begin{array}{cc}
a=0 \text { or } a=1 / 2 \\
\begin{array}{c}
c \\
a-\frac{a^{2}}{2}=0 \\
\text { otherwise } \\
r
\end{array} & \text { then } \begin{array}{c}
\text { ark }
\end{array} \\
\text { rank }=2
\end{array}\right. \\
& a \neq 0, \text { and } u \neq 1 / 2 \\
& \text { Dis you got }\left(\begin{array}{cc}
1 & 1 \\
a \\
& a \\
& -2 a \\
& a-\frac{a^{2}}{2}
\end{array}\right) \\
& \text { Hen } a=0 \Rightarrow r a n k=1 \\
& a=Y_{2} \Rightarrow \operatorname{ran} k=1 \\
& \text { oflerwise } \Rightarrow \text { raki }=0
\end{aligned}
$$

Exercise 1. What is all the possible rank of

$$
A=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]
$$

when a, b, c, d varies.
2 . When is A invertible?

$$
\begin{aligned}
& E_{21}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
a & b & c & c \\
a & b & c & d
\end{array}\right] \\
& E_{31}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & b-a & c-a & c-a \\
a & b & c & d
\end{array}\right] \\
& E_{41}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & b-a & c-a & c-a \\
0 & b-a & c-a & d-a
\end{array}\right] \\
& E_{32}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{32} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & b-a & c-a & d-a
\end{array}\right] \\
& E_{42}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{42} E_{32} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & c-b & d-b
\end{array}\right] \\
& E_{43}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right] \quad \rightarrow \quad E_{43} E_{42} E_{32} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & 0 & d-c
\end{array}\right] \\
& \text { asking number of } 0 \\
& \text { in } a, b-a, c-b, d-c
\end{aligned}
$$

 For those b, write down the complete solution.

$$
\begin{aligned}
& \left(\begin{array}{lll|l}
1 & 1 & 1 & b_{1} \\
2 & 2 & 3 & b_{2} \\
0 & 0 & 1 & b_{3}
\end{array}\right) \xrightarrow{R 2 \leftarrow R 2-2 R 1}\left(\begin{array}{ccc|c}
1 & 1 & 1 & b_{1} \\
0 & 0 & 1 & b_{2} \\
-2 b_{1}
\end{array}\right) \\
& \xrightarrow{R 3 \leftarrow R 3-R_{2}}\left(\begin{array}{ccc|c}
1 & 1 & 1 & b_{1} \\
0 & 0 & 1 & b_{2}-2 b_{1} \\
0 & 0 & 0 & b_{3}-\left(b_{2}-2 b_{1}\right)
\end{array}\right) \\
& =b_{3}+2 b_{1}-b_{2} \\
& 1 b_{3}+2 b_{1}-b_{2}=0 \Rightarrow b_{3}=b_{2}-2 b_{1} \\
& \left(\begin{array}{ccc|c}
1 & 1 & 1 & b_{\mathbf{1}} \\
0 & 0 & 1 & b_{2}-2 b_{1} \\
0 & 0 & 0 & 0
\end{array}\right) \quad \begin{array}{l}
\text { solve } \begin{array}{c}
x_{1}, \quad x_{3} \\
x_{1}=-x_{2}-b_{2}+3 b_{1} \\
x_{2} \text { is free }
\end{array} \\
x_{3}=b_{2}-2 b_{1}
\end{array}
\end{aligned}
$$

Exercise Calculate the inverse matrix of $M=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & 4\end{array}\right)$?
Use elmination start from $[M \mid I]$ to $\left[I \mid M^{-1}\right]$

Use R1 to ellimate the column 1 in R2 and R3

$$
\left.\xrightarrow{R 1} \begin{array}{l}
\leftarrow R 1-1 \cdot R 2 \tag{1}\\
R 3
\end{array} \leftarrow R 3-2 \cdot R 2, \begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & -1 & 0 \\
0 & 1 & 1 & \mid c c c \\
0 & 0 & 1 & 1 & 0 \\
1 & -2 & 1
\end{array}\right)
$$

Use R2 to ellimate the column 2 in R1 and R3

$$
\xrightarrow{\begin{array}{c}
R 1 \\
R 2
\end{array} \leftarrow R 1-0 \cdot R 3} \begin{array}{lll|ccc}
\leftarrow R 2-1 \cdot R 3
\end{array}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & -1 & 0 \\
0 & 1 & 0 & \mid & -2 & 3
\end{array}-1\right)
$$

Use R3 to ellimate the column 3 in R1 and R2
Thus

$$
M^{-1}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-2 & 3 & -1 \\
1 & -2 & 1
\end{array}\right)
$$

Check if $M M^{-1}$ is idenity! equal to check

- $(1,1,1) \cdot(2,-2,1)=1,(1,2,2) \cdot(2,-2,1)=0,(1,3,4) \cdot(2,-2,1)=0$
- $(1,1,1) \cdot(-1,3,-2)=0,(1,2,2) \cdot(-1,3,-2)=1,(1,3,4) \cdot(-1,3,-2)=0$
- $(1,1,1) \cdot(0,-1,1)=0,(1,2,2) \cdot(0,-1,1)=0,(1,3,4) \cdot(0,-1,1)=1$
(2) $A \in \mathbb{R}^{m \times n}$

Yes, A have 5 column $(n=5)$. For we have 2 free variables, thus $\operatorname{dim}(\operatorname{Nul}(A))=2$ So rank $r=$ $n-\operatorname{dim}(\operatorname{Nul}(A))=5-2=3$

We don't know dim (nu| $\left(A T^{\prime}\right)$)
be cause re don be cause re don't frow m
2. There exist a matrix A whose column space is spanned by $(1,2,3)$ and $(1,0,1)$ and whose nullspace is spanned by $(1,2,3,6) \mathbb{R}^{4} \Rightarrow n=4$
No. The dimensions of such a matrix must be 3 by $4(m=3$ and $n=4)$. Th

No. The dimensions of such a matrix must be 3 by $4(m=3$ and $n=4)$. The dimension of the column space is 2 , because the given vectors are independent. That means the dimension of the nullspace must be $4-2=2$. The null space cannot be spanned by 1 vector.

$$
\begin{aligned}
& A \in \mathbb{R}^{m \times n} \quad A \in \mathbb{R}^{3 \times 4} \quad \operatorname{dim}(\operatorname{col}(A))=2 \\
& \operatorname{dim}(\text { nu } \mid \text { space }))=1 \\
& \text { by Funchimentel Them } \\
& \operatorname{dim}_{2}(0 \mid)+\operatorname{div}(\mid u \cdot 1)=n=c
\end{aligned}
$$

3.

- For a matrix $A \in \mathbb{R}^{4 \times 5}$, the largest possible rank of A is 5 . No, rank $\leq m$, rank $\leq n$
- For a matrix $A \in \mathbb{R}^{4 \times 5}$ there are possibility that linear system $A x=b$ have one and only have one solution. No, rank ≤ 4, so this can't be a full column rank matrix, $\operatorname{dim}(\operatorname{Nul}(A))$ can't be zero. Futhermore, this linear sytem must have infinite solution. Because this is a full row rank matrix, thus the system at least have one solution. $\left(\operatorname{row}(A)=\mathbb{R}^{4}\right)$
- For a matrix $A \in \mathbb{R}^{4 \times 5}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have one and only have one solution. No, same as above. $\operatorname{dim}(\operatorname{Nul}(A))=1$
- For a matrix $A \in \mathbb{R}^{4 \times 3}, \operatorname{rank}(A)=3$. There are possibility that linear system $A x=b$ have one and only have one solution. Yes, this is a full column rank matrix, $\operatorname{so} \operatorname{Nul}(A)=\{\overrightarrow{0}\}$
- For a matrix $A \in \mathbb{R}^{4 \times 5}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=\overline{\bar{b}}$ have no solution. fie Solariar ! No. This is a full row rank matrix, so $\operatorname{dim}(\operatorname{cof}(A))=4$ and $\cot (A) \subset \mathbb{R}^{4}$. This means $\operatorname{cof}(A)=\mathbb{R}^{4}$. Every system $A x=b$ must have a solution. $\quad \operatorname{dim}\left(N_{n} \mid(A)\right)=1 \Rightarrow$ have 0 or infinite solaion.
- For a matrix $A \in \mathbb{R}^{5 \times 4}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have no solution. Yes, this is because this is not a full row rank matrix.
- $Y=A X$ and A is an invertible matrix, then $\operatorname{rank}(Y)=\operatorname{rank}(X)$. Yes,because $Y=A X$ so $\operatorname{rank}(Y) \leq$ $\operatorname{rank}(X)$. For A is invertible matrix, so $X=A^{-1} Y$ which tells us $\operatorname{rank}(X) \leq \operatorname{rank}(Y)$. The only possibility is $\operatorname{rank}(Y)=\operatorname{rank}(X)$

$$
\begin{aligned}
& \downarrow \quad x=\left[\begin{array}{lll}
v_{1} & \cdots & v_{n}
\end{array}\right] \\
& Y=\left[\begin{array}{llll}
A & \vec{v} & \cdots & A \vec{v}_{n}
\end{array}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{rank}(A B) \leq \operatorname{rank}(A) \\
& \operatorname{ran} k(A B) \leq \operatorname{rank}(B) \\
& \operatorname{rank}(x)=\operatorname{rank}\left(A^{-1} Y\right) \leq \operatorname{ran}(Y)
\end{aligned} \quad \Rightarrow \operatorname{rank}(x)=\operatorname{rank}(x)
$$

Harder Question:
$\left.\operatorname{Nul(} A^{\top}\right)=m-r$ needs move in formation!
what is all the possible Clue?
2\# Free Variable \Rightarrow dian $(N a \mid(A))=2$
$m \geqslant r, \operatorname{din}\left(N_{n} \mid\left(A^{\top}\right)\right)$ can be buy \mathbb{Z}^{+}

1. The complete solution of linear system $A x=b$ is $\vec{x}=\left[\begin{array}{l}2 \\ 3 \\ 1 \\ 2\end{array}\right]+x_{1}\left[\begin{array}{c}1 \\ 0 \\ 2 \\ -1 \\ 1\end{array}\right]+x_{2}\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]$, then $\operatorname{dim}(\operatorname{col}(A))=3$
$A \in \mathbb{R}^{m \times n}$? What is m ? we need mope information $\left[\begin{array}{c}-1 \\ 2\end{array}\right] m$ is \# Es What is $n ? n=5$

$$
\Rightarrow \operatorname{dim}(\operatorname{col}(A))=n-\text { \#Free variable }=5-2=3, \quad \operatorname{dim}(\operatorname{Row}(A))=\operatorname{dim}(a \mid(A))
$$

2. There exist a matrix A whose column space is spanned by $(1,2,3)$ and $(1,0,1)$ and whose nullspace is spanned by $(1,2,3,6)$

Fix the site of $A \quad n=4 \quad m=3$

$$
\operatorname{dim}\left(C_{0} \mid(A)\right)=2
$$

$$
\operatorname{dim}\left(N_{n} \mid(A)\right)=1
$$

3.

- For a matrix $A \in \mathbb{R}^{4 \times 5}$, the largest possible rank of A is 5 . No $\quad \operatorname{ran} \boldsymbol{F}(\boldsymbol{A}) \leqslant \boldsymbol{\psi}$
- For a matrix $A \in \mathbb{R}^{4 \times 5}$ there are possibility that linear system $A x=b$ have one and only have one solution. No
- For a matrix $A \in \mathbb{R}^{4 \times 5}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have one and only have one solution. No
- For a matrix $A \in \mathbb{R}^{4 \times 3}, \operatorname{rank}(A)=3$. There are possibility that linear system $A x=b$ have one and only have one solution. Yes
- For a matrix $A \in \mathbb{R}^{5 \times 4}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have one and only have one solution. Yes
- For a matrix $A \in \mathbb{R}^{4 \times 5}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have no solution. No
- For a matrix $A \in \mathbb{R}^{5 \times 4}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have no solution. Yes
$\bullet Y=A X$ and A is an invertible matrix, then $\operatorname{rank}(Y)=\operatorname{rank}(X)$. Yes

Fintly $\operatorname{rank}(A X) \leqslant \operatorname{aink}(x)$ $Y=A X$ and A is iacerfible means.

$$
A^{-1} Y=X \text { so } \operatorname{rank}(X)=\operatorname{rank}\left(A^{-1} Y\right) \leqslant \operatorname{rak}(Y)
$$

Checking linear subspace.

1. any $V_{1}, V_{2} \in V$ and $C_{1}, C_{2} \in \mathbb{R}$
we have $C_{1} V_{1}+C_{2} V_{2} \in V$

$$
\text { Ex. } V=\left\{\left.\left(\begin{array}{ll}
a & b \\
c & a
\end{array}\right) \right\rvert\, a \cdot b \cdot c \cdot d \in \mathbb{R}, a+b+c+d=0\right\}
$$

is a vector space. \square
then $\rightarrow\left(\begin{array}{l}x_{1} a_{1}+x_{2} a_{2}, \\ x_{1} b_{1}+x_{2} b_{2} \\ x_{1} a_{1}+x_{2} c_{2}, x_{1} d_{1}+x_{1} a_{2}\end{array}\right)$
Checking $\left(\begin{array}{ll}a_{1} & b_{1} \\ c_{1} & d_{1}\end{array}\right) \quad a_{1}+b_{1}+c+d_{1}=0 \quad\left\{\begin{array}{l}a_{2}\end{array}\right)\left\{\begin{array}{l}x_{1} a_{1}+x_{2} c_{2} \\ \text { scisfies }\end{array}\right.$
$\left(\begin{array}{lll}a_{2} & b_{2} & c_{2}\end{array} d_{2}\right) \quad a_{2}+b_{2}+c_{2}+d_{2}=0 \quad\left(x_{1}-a_{1}+x_{1} a_{2}\right)+\left(x_{1} b_{1}+x_{2} b_{2}\right)$
a.b.c. are free variables $\underbrace{+\left(x_{1} c_{1}+x_{c}\left(c_{2}\right)+\left(x_{1}\right)\left(t x_{l} l_{l}\right)\right.}_{=0}$
means once c. b.e are fixed. then disfixed
(you can also understand - b.c.d are free. Hen a fixed.
-aced are free b fixed

- arb. el are tree c fired
- Find basis: $\quad \begin{aligned} & \text { set } \\ & \downarrow\end{aligned}$ one of free variable to 1
all the often to zero

$$
\left.\begin{array}{llllll}
-a=1 & b=0 & c=0 & \Rightarrow d=-1 & \Rightarrow & \left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) \\
-a=0 & b=1 & c=0 & \Rightarrow d==1 & \Rightarrow & \left(\begin{array}{cc}
0 & 1 \\
0 & -1
\end{array}\right) \\
-a=0 & b=0 & c=1 & \Rightarrow d=-1 & \Rightarrow & \left(\begin{array}{cc}
0 & 0 \\
1 & -1
\end{array}\right)
\end{array}\right) \text { dim =3!! }
$$

is $V=\left\{(x, y) \mid x^{2}-y^{2}=0\right\}$ a Vector space
To verify a set is not a vector space. you only to give an example

$$
\begin{array}{lr}
(1.1) \in V & \text { because } 1^{2}-1^{2}=0 \\
(1 .-1) \in V & 1^{2}-(-1)^{2}=0
\end{array}
$$

but $(2,0)=(1.1)+(1,-1) \not V$

