# Linear Algebra 

Midterm Review Question

## Yiping Lu

January 2024

Exercise Consider the matrix:

$$
A=\left[\begin{array}{lllll}
1 & 3 & 5 & 0 & 7 \\
0 & 0 & 0 & 1 & 2 \\
1 & 3 & 5 & 1 & 9
\end{array}\right]
$$

- Write down $A=L U$ where $L$ is an lower traingular matrix and $U$ is a REF.
- Calculate the four fundamental subspaces

Exercise 1. all the possible rank of

$$
\left[\begin{array}{lll}
1 & 1 & a \\
3 & 3 & a \\
a & a & a
\end{array}\right]
$$

when $a$ varies.
2. all the possible rank of

$$
\left[\begin{array}{lll}
1 & 3 & a \\
3 & 1 & a \\
a & a & a
\end{array}\right]
$$

when $a$ varies.

Exercise 1. What is all the possible rank of

$$
A=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]
$$

when $a, b, c, d$ varies.
2 . When is $A$ invertible?

$$
\begin{aligned}
& E_{21}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
a & b & c & c \\
a & b & c & d
\end{array}\right] \\
& E_{31}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & b-a & c-a & c-a \\
a & b & c & d
\end{array}\right] \\
& E_{41}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & b-a & c-a & c-a \\
0 & b-a & c-a & d-a
\end{array}\right] \\
& E_{32}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{32} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & b-a & c-a & d-a
\end{array}\right] \\
& E_{42}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{42} E_{32} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & c-b & d-b
\end{array}\right] \\
& E_{43}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right] \quad \rightarrow \quad E_{43} E_{42} E_{32} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & 0 & d-c
\end{array}\right]
\end{aligned}
$$

Exercise For which $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ are there solutions to $A x=b$, where the matrix $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 3 \\ 0 & 0 & 1\end{array}\right)$ ?
For those $b$, write down the complete solution.

Exercise Calculate the inverse matrix of $M=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & 4\end{array}\right)$ ?
Use elmination start from $[M \mid I]$ to $\left[I \mid M^{-1}\right]$

$$
[M \mid I]=\left(\begin{array}{ccc|ccc}
1 & 1 & 1 & \left|\begin{array}{ccc}
1 & 0 & 0 \\
1 & 2 & 2 \\
1 & 3 & 4
\end{array}\right| & 0 & 1
\end{array}\right) 0 \begin{array}{cc}
R 2 & \leftarrow R 2-R 1 \\
R 3 & \leftarrow R 3-R 1 \\
\leftarrow R
\end{array}\left(\begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 2 & 3 & -1 & 0 & 1
\end{array}\right)
$$

Use R1 to ellimate the column 1 in R2 and R3

$$
\left.\xrightarrow{R 1} \begin{array}{l}
\leftarrow R 1-1 \cdot R 2  \tag{1}\\
R 3
\end{array} \leftarrow R 3-2 \cdot R 2, \begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & -1 & 0 \\
0 & 1 & 1 & |c| c c \\
0 & 0 & 1 & 1 & 0 \\
-2 & 1
\end{array}\right)
$$

Use R2 to ellimate the column 2 in R1 and R3

$$
\xrightarrow{\begin{array}{c}
R 1 \\
R 2
\end{array} \leftarrow R 1-0 \cdot R 3} \begin{array}{lll|ccc}
\leftarrow R 2-1 \cdot R 3
\end{array}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & -1 & 0 \\
0 & 1 & 0 & \mid c c c \\
0 & 0 & 1 & 1 & 3 & -1 \\
-2 & 1
\end{array}\right)
$$

Use R3 to ellimate the column 3 in R1 and R2
Thus

$$
M^{-1}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-2 & 3 & -1 \\
1 & -2 & 1
\end{array}\right)
$$

Check if $M M^{-1}$ is idenity! equal to check

- $(1,1,1) \cdot(2,-2,1)=1,(1,2,2) \cdot(2,-2,1)=0,(1,3,4) \cdot(2,-2,1)=0$
- $(1,1,1) \cdot(-1,3,-2)=0,(1,2,2) \cdot(-1,3,-2)=1,(1,3,4) \cdot(-1,3,-2)=0$
- $(1,1,1) \cdot(0,-1,1)=0,(1,2,2) \cdot(0,-1,1)=0,(1,3,4) \cdot(0,-1,1)=1$

1. The complete solution of linear system $A x=b$ is $\vec{x}=\left[\begin{array}{l}0 \\ 2 \\ 3 \\ 1 \\ 2\end{array}\right]+x_{1}\left[\begin{array}{c}1 \\ 0 \\ 2 \\ -1 \\ 1\end{array}\right]+x_{2}\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]$, then $\operatorname{dim}(\operatorname{col}(A))=3$
2. There exist a matrix $A$ whose column space is spanned by $(1,2,3)$ and $(1,0,1)$ and whose nullspace is spanned by $(1,2,3,6)$
3. 

- For a matrix $A \in \mathbb{R}^{4 \times 5}$, the largest possible rank of $A$ is 5 . No
- For a matrix $A \in \mathbb{R}^{4 \times 5}$ there are possibility that linear system $A x=b$ have one and only have one solution. No
- For a matrix $A \in \mathbb{R}^{4 \times 5}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have one and only have one solution. No
- For a matrix $A \in \mathbb{R}^{4 \times 3}, \operatorname{rank}(A)=3$. There are possibility that linear system $A x=b$ have one and only have one solution. Yes
- For a matrix $A \in \mathbb{R}^{5 \times 4}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have one and only have one solution. Yes
- For a matrix $A \in \mathbb{R}^{4 \times 5}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have no solution. No
- For a matrix $A \in \mathbb{R}^{5 \times 4}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have no solution. Yes
- $Y=A X$ and $A$ is an invertible matrix, then $\operatorname{rank}(Y)=\operatorname{rank}(X)$. Yes

