Linear Algebra

Midterm Review Question

Yiping Lu

January 2024

Exercise Consider the matrix:

$$
A=\left[\begin{array}{lllll}
1 & 3 & 5 & 0 & 7 \\
0 & 0 & 0 & 1 & 2 \\
1 & 3 & 5 & 1 & 9
\end{array}\right]
$$

- Write down $A=L U$ where L is an lower traingular matrix and U is a REF.
- Calculate the four fundamental subspaces

$$
A=\left[\begin{array}{lllll}
1 & 3 & 5 & 0 & 7 \\
0 & 0 & 0 & 1 & 2 \\
1 & 3 & 5 & 1 & 9
\end{array}\right] \xrightarrow{R 3 \leftarrow R 3-R 1}\left[\begin{array}{ccccc}
1 & 3 & 5 & 0 & 7 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 1 & 2
\end{array}\right] \xrightarrow{R 3<R 3-R 2} \underbrace{\left[\begin{array}{ccccc}
1 & 3 & 5 & 0 & 7 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]}_{U}
$$

The elimination matrix we have is $E_{31}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 0 & 1\end{array}\right], E_{32}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$ and $E_{32} E_{31} A=U$ (order!)
Thus

$$
A=\underbrace{E_{31}^{-1} E_{32}^{-1}}_{L} U
$$

and $E_{31}^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & 1\end{array}\right], E_{32}^{-1}=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$. So

$$
L=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 1 & 1
\end{array}\right], U=\left[\begin{array}{lllll}
1 & 3 & 5 & 0 & 7 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

$\operatorname{Col}(A):\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 1 \\ 1\end{array}\right]$ (first and forth column (pivot) of A)

- Row $(A):\left[\begin{array}{l}1 \\ 3 \\ 5 \\ 0 \\ 7\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 0 \\ 1 \\ 2\end{array}\right]$ (non-zero rows of REF)
- $\operatorname{Nul}(A)=\operatorname{Nul}(U)$

$$
\begin{aligned}
& -x_{1}=-3 x_{2}-5 x_{3}-7 x_{5} \\
& -x_{2}, x_{3} \text { is free } \\
& -x_{4}=-2 x_{5} \\
& -x_{5} \text { is free }
\end{aligned}
$$

Thus

$$
\operatorname{Nul}(A)=\left\{\left.\left[\begin{array}{ccc}
-3 x_{2} & -5 x_{3} & -7 x_{5} \\
x_{2} & & \\
& x_{3} & \\
& & -2 x_{5} \\
& & x_{5}
\end{array}\right]=x_{2}\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
-5 \\
0 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
-7 \\
0 \\
0 \\
-2 \\
1
\end{array}\right] \right\rvert\, x_{2}, x_{3}, x_{5} \in \mathbb{R}\right\}
$$

so the basis is

$$
\left[\begin{array}{c}
-3 \\
1 \\
0 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-5 \\
0 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-7 \\
0 \\
0 \\
-2 \\
1
\end{array}\right]
$$

- $\operatorname{Nul}\left(A^{\top}\right)$:

$$
A^{\top}=\left[\begin{array}{lll}
1 & 0 & 1 \tag{REF}\\
3 & 0 & 3 \\
5 & 0 & 5 \\
0 & 1 & 1 \\
7 & 2 & 9
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 2 & 2
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & 0
\end{array}\right] \sim\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 1 \\
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]
$$

$-x_{1}=-x_{3}$
$-x_{2}=-x_{3}$
$-x_{3}$ is free
The basis of $\operatorname{Nul}\left(A^{\top}\right)$ is $\left[\begin{array}{c}-1 \\ -1 \\ 1\end{array}\right]$
What is the dimension of the four fundemental subspaces?

Exercise 1. all the possible rank of

$$
\left[\begin{array}{lll}
1 & 1 & a \\
3 & 3 & a \\
a & a & a
\end{array}\right]
$$

when a varies.

$$
\left(\begin{array}{ccc}
1 & 1 & a \tag{1}\\
3 & 3 & a \\
a & a & a
\end{array}\right) \xrightarrow{\begin{array}{c}
R 2 \\
R 2
\end{array} \leftarrow R 2-3 R 1} \leftarrow\left(\begin{array}{ccc}
1 & 1 & a \\
0 & 0 & -2 a \\
0 & 0 & a-a^{2}
\end{array}\right) \xrightarrow{R 3<R 1}\left(\begin{array}{c}
\\
\leftarrow 2+\frac{1-a}{2} R 1 \\
0
\end{array} \begin{array}{ccc}
1 & 1 & a \\
0 & -2 a \\
0 & 0 & 0
\end{array}\right)
$$

- $a=0, \mathrm{rank}=1$
- $a \neq 0$, rank $=2$

2. all the possible rank of

$$
\left[\begin{array}{lll}
1 & 3 & a \\
3 & 1 & a \\
a & a & a
\end{array}\right]
$$

when a varies.

$$
\left(\begin{array}{ccc}
1 & 3 & a \tag{2}\\
3 & 1 & a \\
a & a & a
\end{array}\right) \xrightarrow{\begin{array}{c}
R 2 \\
R 2
\end{array} \leftarrow R 2-3 R 1} \leftarrow R 2-a R 1 ~\left(\begin{array}{ccc}
1 & \leftarrow & a \\
0 & -8 & -2 a \\
0 & -2 a & a-a^{2}
\end{array}\right) \xrightarrow{R 3 \quad \leftarrow R 3-\frac{a}{4} R 1}\left(\begin{array}{ccc}
1 & 1 & a \\
0 & -8 & -2 a \\
0 & 0 & a-\frac{a^{2}}{2}
\end{array}\right)
$$

- $a-\frac{a^{2}}{2}=0$ (which means $a=0$ or $a=\frac{1}{2}$), rank $=2$
- $a-\frac{a^{2}}{2} \neq 0$ (which means $a \neq 0$ and $a \neq \frac{1}{2}$), rank $=3$

Exercise 1. What is all the possible rank of

$$
A=\left[\begin{array}{llll}
a & a & a & a \\
a & b & b & b \\
a & b & c & c \\
a & b & c & d
\end{array}\right]
$$

when a, b, c, d varies.
2 . When is A invertible?

$$
\begin{aligned}
& E_{21}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
-1 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
a & b & c & c \\
a & b & c & d
\end{array}\right] \\
& E_{31}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & b-a & c-a & c-a \\
a & b & c & d
\end{array}\right] \\
& E_{41}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
-1 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & b-a & c-a & c-a \\
0 & b-a & c-a & d-a
\end{array}\right] \\
& E_{32}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{32} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & b-a & c-a & d-a
\end{array}\right] \\
& E_{42}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & -1 & 0 & 1
\end{array}\right] \quad \rightarrow \quad E_{42} E_{32} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & c-b & d-b
\end{array}\right] \\
& E_{43}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & -1 & 1
\end{array}\right] \quad \rightarrow \quad E_{43} E_{42} E_{32} E_{41} E_{31} E_{21} A=\left[\begin{array}{cccc}
a & a & a & a \\
0 & b-a & b-a & b-a \\
0 & 0 & c-b & c-b \\
0 & 0 & 0 & d-c
\end{array}\right]
\end{aligned}
$$

1.

- $\operatorname{rank}=0, a=b=c=d=0$
- $\operatorname{rank}=k, k$ of $a, b-a, c-b, d-c$ is 0

2. $a \neq 0, a \neq b, b \neq c, d \neq c$

Exercise For which $b=\left(\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right)$ are there solutions to $A x=b$, where the matrix $A=\left(\begin{array}{lll}1 & 1 & 1 \\ 2 & 2 & 3 \\ 0 & 0 & 1\end{array}\right)$?
For those b, write down the complete solution.
We first reduce to REF

$$
A=\left(\begin{array}{lll}
1 & 1 & 1 \tag{3}\\
2 & 2 & 3 \\
0 & 0 & 1
\end{array}\right) \xrightarrow{R 2 \leftarrow R 2-2 R 1}\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 1
\end{array}\right) \xrightarrow{R 3 \leftarrow R 3-R 2}\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 0 & 1 \\
0 & 0 & 0
\end{array}\right)
$$

- basis of $\operatorname{row}(A)$ is $\left[\begin{array}{l}1 \\ 1 \\ 1\end{array}\right],\left[\begin{array}{l}0 \\ 0 \\ 2\end{array}\right]$. (First and second row of REF)
- basis of $\operatorname{col}(A)$ is $\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right],\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]$. (First and third column of A)
- $\operatorname{Nul}(A)$: solve equation $A x=0$ gives solution $x_{3}=0, x_{2}$ is the free variable, $x_{1}=-x_{2}-x_{3}=-x_{2}$. So

$$
\begin{aligned}
& \operatorname{Nul}(A)=\left\{\left.\left[\begin{array}{c}
-x_{2} \\
x_{2} \\
0
\end{array}\right] \right\rvert\, x_{2} \in \mathbb{R}\right\}=\operatorname{span}\left\{\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]\right\} \\
& \left(\begin{array}{ccc|c}
1 & 1 & 1 & b_{1} \\
2 & 2 & 3 & b_{2} \\
0 & 0 & 1 & b_{3}
\end{array}\right) \xrightarrow{R 2 \leftarrow R 2-2 R 1}\left(\begin{array}{ccc|c}
1 & 1 & 1 \\
0 & 0 & 1 & b_{1} \\
0 & 0 & 1 & b_{2}-2 b_{1} \\
b_{3}
\end{array}\right) \xrightarrow{R 3<R 3-R 2}\left(\begin{array}{lll|l}
1 & 1 & 1 & b_{1} \\
0 & 0 & 1 & b_{2}-2 b_{1} \\
0 & 0 & 0 & b_{3}-b_{2}+2 b_{1}
\end{array}\right)
\end{aligned}
$$

The solution have solution means $b_{3}=b_{2}-2 b_{1}$.
Complete solution: Solve the equation by set x_{2} as free varible:

- $x_{3}=b_{2}-2 b_{1}$,
- x_{2} is the free variable,
- $x_{1}=-x_{2}-x_{3}+b_{1}=-x_{2}-\left(b_{2}-2 b_{1}\right)+b_{1}=-x_{2}-b_{2}+3 b_{1}$

$$
\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-x_{2}-b_{2}+3 b_{1} \\
x_{2} \\
b_{2}-2 b_{1}
\end{array}\right]=\underbrace{\left[\begin{array}{c}
-b_{2}+3 b_{1} \\
0 \\
b_{2}-2 b_{1}
\end{array}\right]}_{\text {find special solution by set free varaible to zero }}+\underbrace{x_{2}\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right]}_{\text {null space }}
$$

Exercise Calculate the inverse matrix of $M=\left(\begin{array}{lll}1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 3 & 4\end{array}\right)$?
Use elmination start from $[M \mid I]$ to $\left[I \mid M^{-1}\right]$

$$
\left.[M \mid I]=\left(\begin{array}{ccc|ccc}
1 & 1 & 1 & \left|\begin{array}{ccc}
1 & 0 & 0 \\
1 & 2 & 2 \\
0 & 1 & 0 \\
1 & 3 & 4
\end{array}\right| & 0 & 0
\end{array}\right) \xrightarrow{\left.\begin{array}{l}
R 2 \\
R 3
\end{array}\right) \leftarrow R 2-R 1} \leftarrow \leftarrow R 3-R 1 . \begin{array}{ccc|ccc}
1 & 1 & 1 & 1 & 0 & 0 \\
0 & 1 & 1 & -1 & 1 & 0 \\
0 & 2 & 3 & -1 & 0 & 1
\end{array}\right)
$$

Use R1 to ellimate the column 1 in R2 and R3

$$
\left.\xrightarrow{R 1} \begin{array}{l}
\leftarrow R 1-1 \cdot R 2 \tag{5}\\
R 3
\end{array} \leftarrow R 3-2 \cdot R 2, \begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & -1 & 0 \\
0 & 1 & 1 & |c| c c \\
0 & 0 & 1 & 1 & 0 \\
-2 & 1
\end{array}\right)
$$

Use R2 to ellimate the column 2 in R1 and R3

$$
\xrightarrow{\begin{array}{c}
R 1 \\
R 2
\end{array} \leftarrow R 1-0 \cdot R 3} \begin{array}{lll|ccc}
\leftarrow R 2-1 \cdot R 3
\end{array}\left(\begin{array}{ccc|ccc}
1 & 0 & 0 & 2 & -1 & 0 \\
0 & 1 & 0 & \mid c c c \\
0 & 0 & 1 & 1 & 3 & -1 \\
-2 & 1
\end{array}\right)
$$

Use R3 to ellimate the column 3 in R1 and R2
Thus

$$
M^{-1}=\left(\begin{array}{ccc}
2 & -1 & 0 \\
-2 & 3 & -1 \\
1 & -2 & 1
\end{array}\right)
$$

Check if $M M^{-1}$ is idenity! equal to check

- $(1,1,1) \cdot(2,-2,1)=1,(1,2,2) \cdot(2,-2,1)=0,(1,3,4) \cdot(2,-2,1)=0$
- $(1,1,1) \cdot(-1,3,-2)=0,(1,2,2) \cdot(-1,3,-2)=1,(1,3,4) \cdot(-1,3,-2)=0$
- $(1,1,1) \cdot(0,-1,1)=0,(1,2,2) \cdot(0,-1,1)=0,(1,3,4) \cdot(0,-1,1)=1$

1. The complete solution of linear system $A x=b$ is $\vec{x}=\left[\begin{array}{l}0 \\ 2 \\ 3 \\ 1 \\ 2\end{array}\right]+x_{1}\left[\begin{array}{c}1 \\ 0 \\ 2 \\ -1 \\ 1\end{array}\right]+x_{2}\left[\begin{array}{c}-1 \\ 0 \\ 0 \\ 1 \\ 0\end{array}\right]$, then $\operatorname{dim}(\operatorname{col}(A))=3$

Yes, A have 5 column $(n=5)$. For we have 2 free variables, thus $\operatorname{dim}(\operatorname{Nul}(A))=2$ So rank $r=$ $n-\operatorname{dim}(\operatorname{Nul}(A))=5-2=3$
2. There exist a matrix A whose column space is spanned by $(1,2,3)$ and $(1,0,1)$ and whose nullspace is spanned by $(1,2,3,6)$

No. The dimensions of such a matrix must be 3 by $4(m=3$ and $n=4)$. The dimension of the column space is 2 , because the given vectors are independent. That means the dimension of the nullspace must be $4-2=2$. The null space cannot be spanned by 1 vector.
3.

- For a matrix $A \in \mathbb{R}^{4 \times 5}$, the largest possible rank of A is 5 . No, rank $\leq m$, rank $\leq n$
- For a matrix $A \in \mathbb{R}^{4 \times 5}$ there are possibility that linear system $A x=b$ have one and only have one solution. No, rank ≤ 4, so this can't be a full column rank matrix, $\operatorname{dim}(\operatorname{Nul}(A))$ can't be zero. Futhermore, this linear sytem must have infinite solution. Because this is a full row rank matrix, thus the system at least have one solution. $\left(\operatorname{row}(A)=\mathbb{R}^{4}\right)$
- For a matrix $A \in \mathbb{R}^{4 \times 5}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have one and only have one solution. No, same as above. $\operatorname{dim}(\operatorname{Nul}(A))=1$
- For a matrix $A \in \mathbb{R}^{4 \times 3}, \operatorname{rank}(A)=3$. There are possibility that linear system $A x=b$ have one and only have one solution. Yes, this is a full column rank matrix, so $\operatorname{Nul}(A)=\{\overrightarrow{0}\}$
- For a matrix $A \in \mathbb{R}^{4 \times 5}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have no solution. No. This is a full row rank matrix, so $\operatorname{dim}(\operatorname{col}(A))=4$ and $\operatorname{col}(A) \subset \mathbb{R}^{4}$. This means $\operatorname{col}(A)=\mathbb{R}^{4}$. Every system $A x=b$ must have a least one solution.
The dimension of null space $\operatorname{dim}(\operatorname{Nul}(\mathrm{A}))=5-4=1$. So the system have 0 or ∞ solution.
Combine the two rational, we know the linear system must have infinite solutions.
- For a matrix $A \in \mathbb{R}^{5 \times 4}, \operatorname{rank}(A)=4$. There are possibility that linear system $A x=b$ have no solution. Yes, this is because this is not a full row rank matrix.
- $Y=A X$ and A is an invertible matrix, then $\operatorname{rank}(Y)=\operatorname{rank}(X)$. Yes, because $Y=A X$ so $\operatorname{rank}(Y) \leq$ $\operatorname{rank}(X)$. For A is invertible matrix, so $X=A^{-1} Y$ which tells us $\operatorname{rank}(X) \leq \operatorname{rank}(Y)$. The only possiblity is $\operatorname{rank}(Y)=\operatorname{rank}(X)$

