
Math 140 sections 6.1, 6.2

Sec 6.1:

1. Find the eigenvalues and eigenvectors of the following matrix

A =

[
1 0
−1 4

]
.

Check that indeed Ax = λx for each eigenvalue.

The characteristic polynomial is (1− λ)(4− λ). Hence A has two eigenvalues 1 and 4.
Write x = (x1, x2). Then, to compute the eigenvectors, we solve for x in Ax = λx,
i.e., we solve (A− λI)x = 0. That is,[

1− λ 0
−1 4− λ

] [
x1
x2

]
=

[
0
0

]
.

This gives:

(1− λ)x1 = 0, (1)

−x1 + (4− λ)x2 = 0. (2)

First, we set λ = 1. From (2), we get 3x2 = x1. Hence, (3, 1) is an eigenvector
associated with the eigenvalue 1.

Let us set λ = 4. From (1), we can see x1 = 0 and there is no requirement on x2. So,
(0, 1) is an eigenvector associated with the eigenvalue 4.

Now let us check the results. We compute[
1 0
−1 4

] [
3
1

]
= 1

[
3
1

]
,

and [
1 0
−1 4

] [
0
1

]
= 4

[
0
1

]
.
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Math 140 sections 6.1, 6.2

2. Compute the eigenvalues and eigenvectors of the following rank one matrix:1
2
1

 [2 1 2
]

=

2 1 2
4 2 4
2 1 2


What do you notice about the eigenvalues and eigenvectors? Explain.

Denote the above matrix by A. Set u =

1
2
1

 and v =

2
1
2

 Then A = uvT. We

can compute that A has two distinct eigenvalues. The first one is 6 with eigenvector

x1 =

1
2
1

. The second one is 0 with eigenvectors x2 =

−1
2
0

 and x3 =

−1
0
1

.

The observations are:

• x1 is proportional to u, because for any vector x, we must have that

Ax = uvTx = u(v · x) = (v · x)u. (3)

• x2 and x3 are orthogonal to v, because in order to have Ax = 0, by (3), we must
have uvTx = 0 =⇒ (vTx)u = 0 =⇒ vTx = 0, i.e., v · x = 0, namely, that x
is orthogonal to v.

• The eigenvalue 0 gives two linearly independent eigenvectors, which must mean
that this eigenvalue is repeated. In fact, since the matrix is 3× 3 with rank 1, we
can infer that the matrix is not invertible, i.e., it has determinant equal to zero,
which means that at least one of the eigenvalues must be zero. We will later learn
that the rank will tell us exactly how many zero eigenvalues there are, but that
will have to wait till chapter 7.

2



Math 140 sections 6.1, 6.2

3. Let A be a 3 × 3 matrix with linearly independent eigenvectors u, v, and w corre-
sponding to eigenvalues 0, 3, and 5, respectively.

(a) Give a basis for the nullspace of A.

A basis for the nullspace is given by {u}.

(b) Give a basis for the column space of A.

A basis for the column space is given by {v,w}.

(c) Find a vector x, such that Ax = v + w.

Since u,v,w form a basis for R3, we can express x = au + bv + cw for real
numbers a, b, c to be determined. Now, we can compute

Ax = A(au + bv + cw) = aAu + bAv + cAw = 3bv + 5cw.

Hence, to have Ax = v + w, we must have

(3b− 1)v + (5c− 1)w = 0.

The linear independence implies that b = 1/3 and c = 1/5. There is no condition
for a. For convenience, we set a = 0. So, the vector x can be given be

x =
1

3
v +

1

5
w.

4. Find three 2× 2 matrices with trace 9 and determinant 20. What are the eigenvalues
of each of these matrices?

Some examples are [
1 3
−4 8

]
,

[
2 2
−3 7

]
,

[
3 1
−2 6

]
.

Now, let us compute the eigenvalues. Let

[
a b
c d

]
be such a matrix. Then, we have

a+ d = 9 and ad− bc = 20. The characteristic polynomial is given be

(a− λ)(d− λ)− bc = λ2 − (a+ d)λ+ ad− bc = λ2 − 9λ+ 20.

Then, we can compute that the eigenvalues are 4 and 5.
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Sec 6.2:

1. Which of these matrices cannot be diagonalized?

A =

[
2 −2
2 −2

]
B =

[
2 0
2 −2

]
C =

[
2 0
2 2

]
The matrix A is not diagonalizable. We can compute that A has only one eigenvalue
λ = 0 with algebraic multiplicity 2. However, it only has one independent eigenvector
(1, 1). So the geometric multiplicity of λ = 0 is 1. Since the two multiplicities are not
equal, the matrix is not diagonalizable.

The matrix B is diagonalizable. We can compute that B has two distinct eigenvalues
2 and −2. Since B is 2 × 2, we must have that both multiplicities must be 1. This
implies diagonalizability.

The last matrix C is not diagonalizable. We can compute that it has only one eigenvalue
λ = 2 with algebraic multiplicity 2. However, it only has one independent eigenvector
(0, 1). Hence, the geometric multiplicity of λ = 2 is 1 not equal to the algebraic
multiplicity. Therefore, it is not diagonalizable.

2. Suppose A is a 3 × 3 matrix with eigenvalues 1, 2, and 4. What is the trace of A2?
What is the determinant of A−1?

We know that the square of an eigenvalue of A is an eigenvalue of A2. Hence, 1, 4, 16 are
eigenvalues of A2. Since A is 3× 3, we conclude that these are exactly the eigenvalues
of A2, and each of them has (both algebraic and geometric) multiplicity 1. Since the
trace of A2 is the sum of eigenvalues, we deduce that the trace of A2 is 21.

The determinant of A is 1× 2× 4 = 8. Since the determinant of A−1 is the reciprocal
of the determinant of A, we conclude that the determinant of A−1 is 1

8
.

3. Suppose A is a 3 × 3 matrix with eigenvalues 1, 1, and 2. Which of the following
statements is certain to be true? Why?

(i) A is invertible.

(ii) A is diagonalizable.

(iii) A is not diagonalizable.

It is certain that (i) is always true, because the determinant of A is 1×1×2 = 2 which
is nonzero. However, (ii) and (iii) are not certain to be true. Indeed, we can see that
the algebraic multiplicity of the eigenvalue 1 is 2. If its geometric multiplicity is 2 then
A is diagonalizable; otherwise, A is not diagonalizable.
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4. If A =

[
4 3
1 2

]
, find A100 by diagonalizing A.

We can compute that A has eigenvalue 1 with eigenvector (−1, 1), and eigenvalue 5 with
eigenvector (3, 1). Hence, we can deduce that A100 has eigenvalue 1 with eigenvector

(−1, 1), and eigenvalue 5100 with eigenvector (3, 1). The inverse matrix of

[
−1 3
1 1

]
is[

−1
4

3
4

1
4

1
4

]
. Note that, A can be diagonalized as

A =

[
−1 3
1 1

] [
1 0
0 5

] [
−1

4
3
4

1
4

1
4

]
.

Therefore, we can express A100 as

A100 =

[
−1 3
1 1

] [
1 0
0 5100

] [
−1

4
3
4

1
4

1
4

]
.
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5. Show that the matrices A =

[
5 −4
2 −1

]
and B =

[
4 3
−1 0

]
are similar.

We can compute that both A and B have two distinct eigenvalues 1 and 3. Let

Λ =

[
1 0
0 3

]
. We know that A and B are diagonalizable. Hence, there are invertible U

and V such that

A = UΛU−1,

B = V ΛV −1.

Then, by setting C = UV −1, we can see

A = CBC−1.

Therefore, we conclude that A is similar to B.
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