Sec 5.1, 5.2:

1. Use the properties of determinants to compute the following:
(a) $\operatorname{det}\left[\begin{array}{llll}0 & 0 & 0 & 2 \\ 0 & 0 & 2 & 6 \\ 0 & 1 & 2 & 2 \\ 4 & 4 & 8 & 8\end{array}\right]=\operatorname{det}\left[\begin{array}{llll}4 & 4 & 8 & 8 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 2\end{array}\right]=\operatorname{det}\left[\begin{array}{llll}4 & 4 & 8 & 8 \\ 0 & 1 & 2 & 2 \\ 0 & 0 & 2 & 6 \\ 0 & 0 & 0 & 2\end{array}\right]=4 \cdot 1 \cdot 2 \cdot 2=16$
(b) $\operatorname{det}\left[\begin{array}{lll}101 & 201 & 301 \\ 102 & 202 & 302 \\ 103 & 203 & 303\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}101 & 201 & 301 \\ 102 & 202 & 302 \\ 1 & 1 & 1\end{array}\right]=\operatorname{det}\left[\begin{array}{ccc}101 & 201 & 301 \\ 1 & 1 & 1 \\ 1 & 1 & 1\end{array}\right]=0$
(c) $\operatorname{det}\left[\begin{array}{cccc}1 & 2 & -2 & 0 \\ 2 & 3 & -4 & 1 \\ -1 & -2 & 0 & 2 \\ 0 & 2 & 5 & 3\end{array}\right]=\operatorname{det}\left[\begin{array}{cccc}1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ -1 & -2 & 0 & 2 \\ 0 & 2 & 5 & 3\end{array}\right]=\operatorname{det}\left[\begin{array}{cccc}1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -2 & 2 \\ 0 & 2 & 5 & 3\end{array}\right]=\operatorname{det}\left[\begin{array}{cccc}1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -2 & 2 \\ 0 & 0 & 5 & 5\end{array}\right]$ $=\operatorname{det}\left[\begin{array}{cccc}1 & 2 & -2 & 0 \\ 0 & -1 & 0 & 1 \\ 0 & 0 & -2 & 2 \\ 0 & 0 & 0 & 10\end{array}\right]=20$
2. True or False.
(a) If A and B are identical, except that $b_{11}=2 a_{11}$, then $\operatorname{det} B=2 \operatorname{det} A$.

False
Assuming $A=\left[\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right]$ and $B=\left[\begin{array}{ll}2 & 1 \\ 1 & 1\end{array}\right]$, then, A and B are identical, except that $b_{11}=2 a_{11}$. However, $\operatorname{det} B=1 \neq 2 \operatorname{det} A=0$
(b) The determinant is the product of the pivots.

False
Assuming $A=\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$.
Then $\operatorname{det} A=-1$, but the two pivots are 1 and 1 , so the product of the pivots is 1.
(c) If A is invertible and B is singular, then $A+B$ is invertible.

False
$A=\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$ is invertible and $B=\left[\begin{array}{cc}-1 & 0 \\ 0 & 0\end{array}\right]$ is singular, but $A+B=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]$ is singular.
(d) If A is invertible and B is singular, then $A B$ is singular.

True
$\operatorname{det}(A B)=\operatorname{det} A * \operatorname{det} B=1 * 0=0$
Thus, $A B$ is singular.
(e) The determinant of $A B-B A$ is zero.

False
Assuming $A=\left[\begin{array}{ll}0 & 1 \\ 2 & 0\end{array}\right]$ and $B=\left[\begin{array}{ll}0 & 3 \\ 5 & 0\end{array}\right]$, Thus, $A B-B A=\left[\begin{array}{cc}-1 & 0 \\ 0 & 1\end{array}\right]$. The determinant of $A B-B A$ is not equal to zero.

Sec 5.3:

1. Use cofactor expansion to find the determinants of:
(a) $A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$

Expand the first row and we find only the second cofactor will be kept:
$A=\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]$
The remaining cofactor is,
$M_{43}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
Thus, $\operatorname{det} A=\operatorname{det}\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]=-\operatorname{det}\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
Similarily,
$\operatorname{det} A=\operatorname{det}\left[\begin{array}{llll}0 & 1 & 0 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 0\end{array}\right]=-\operatorname{det}\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=1$
(b) $B=\left[\begin{array}{llll}0 & 0 & 1 & 2 \\ 0 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 \\ 0 & 0 & 0 & 1\end{array}\right]$

Expand the last row and we find only the last cofactor will be kept:
$\operatorname{det} B=\operatorname{det}\left[\begin{array}{llll}0 & 0 & 1 & 2 \\ 0 & 3 & 4 & 5 \\ 6 & 7 & 8 & 9 \\ 0 & 0 & 0 & 1\end{array}\right]$
The kept cofactor will be:
$M_{44}=\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 3 & 4 \\ 6 & 7 & 8\end{array}\right]$
Thus,
$\operatorname{det} B=(-1)^{4+4} \cdot 1 \cdot \operatorname{det} M_{44}=\operatorname{det}\left[\begin{array}{lll}0 & 0 & 1 \\ 0 & 3 & 4 \\ 6 & 7 & 8\end{array}\right]=\operatorname{det}\left[\begin{array}{ll}0 & 3 \\ 6 & 7\end{array}\right]=-18$
2. Consider the matrix $A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$.
(a) Compute the cofactors of A, and determine the cofactor matrix C.

$$
\begin{aligned}
& C_{11}=(-1)^{1+1} \cdot\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]=3 \\
& C_{12}=(-1)^{1+2} \cdot\left[\begin{array}{cc}
-1 & -1 \\
0 & 2
\end{array}\right]=2 \\
& C_{13}=(-1)^{1+3} \cdot\left[\begin{array}{cc}
-1 & 2 \\
0 & -1
\end{array}\right]=1 \\
& C_{21}=(-1)^{2+1} \cdot\left[\begin{array}{cc}
-1 & 0 \\
-1 & 2
\end{array}\right]=2 \\
& C_{22}=(-1)^{2+2} \cdot\left[\begin{array}{cc}
2 & 0 \\
0 & 2
\end{array}\right]=4 \\
& C_{23}=(-1)^{2+3} \cdot\left[\begin{array}{cc}
2 & -1 \\
0 & -1
\end{array}\right]=2 \\
& C_{31}=(-1)^{3+1} \cdot\left[\begin{array}{cc}
-1 & 0 \\
2 & -1
\end{array}\right]=1 \\
& C_{32}=(-1)^{3+2} \cdot\left[\begin{array}{cc}
2 & 0 \\
-1 & -1
\end{array}\right]=2 \\
& C_{33}=(-1)^{3+3} \cdot\left[\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right]=3 \\
& \text { Thus, } C=\left[\begin{array}{cc}
3 & 2 \\
2 & 1 \\
4 & 2 \\
1 & 2
\end{array}\right]
\end{aligned}
$$

(b) Use your result in (a) to compute A^{-1}.

$$
\begin{aligned}
& \operatorname{det} A=\operatorname{det}\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]=-\operatorname{det}\left[\begin{array}{ccc}
-1 & 2 & -1 \\
2 & -1 & 0 \\
0 & -1 & 2
\end{array}\right]=-\operatorname{det}\left[\begin{array}{ccc}
-1 & 2 & -1 \\
0 & 3 & -2 \\
0 & -1 & 2
\end{array}\right] \\
& =\operatorname{det}\left[\begin{array}{cc}
3 & -2 \\
-1 & 2
\end{array}\right]=3 * 2-(-2) *(-1)=4 \\
& A^{*}=C^{T}=\left[\begin{array}{lll}
3 & 2 & 1 \\
2 & 4 & 2 \\
1 & 2 & 3
\end{array}\right] \\
& A^{-1}=\frac{A^{*}}{\operatorname{det} A}=\left[\begin{array}{ccc}
\frac{3}{4} & \frac{1}{2} & \frac{1}{4} \\
\frac{1}{2} & 1 & \frac{1}{2} \\
\frac{1}{4} & \frac{1}{2} & \frac{3}{4}
\end{array}\right]
\end{aligned}
$$

3. A box has edges from $(0,0,0)$ to $(3,1,1),(1,3,1)$, and $(1,1,3)$. Find the volume of the box.
The three edges from the same point of the box are:
$\boldsymbol{a}=(3,1,1)$
$\boldsymbol{b}=(1,3,1)$
$\boldsymbol{c}=(1,1,3)$

The volume of the box is:
$V=\left|\operatorname{det}\left[\begin{array}{lll}3 & 1 & 1 \\ 1 & 3 & 1 \\ 1 & 1 & 3\end{array}\right]\right|=20$
4. The corners of a triangle are $(2,1),(3,4)$, and $(0,5)$. What is the area?

The edge from the point $(2,1)$ to the point $(3,4)$ is:
$\boldsymbol{a}=\left[\begin{array}{l}3 \\ 4\end{array}\right]-\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}1 \\ 3\end{array}\right]$.
The edge from the point $(0,5)$ to the point $(3,4)$ is:
$\boldsymbol{b}=\left[\begin{array}{l}3 \\ 4\end{array}\right]-\left[\begin{array}{l}0 \\ 5\end{array}\right]=\left[\begin{array}{c}3 \\ -1\end{array}\right]$.
Notice that $\boldsymbol{a} \perp \boldsymbol{b}$, so these form the base and hight of the triangle. Hence, the area of the triangle is:

$$
\frac{1}{2}\left|\operatorname{det}\left[\begin{array}{cc}
1 & 3 \\
3 & -1
\end{array}\right]\right|=\frac{10}{2}=5
$$

