Sec 3.3:

1. Consider

$$A = \begin{bmatrix} 1 & 0 & 3 & -4 \\ -2 & 1 & -6 & 6 \\ 1 & 0 & 2 & -1 \end{bmatrix}, \quad \boldsymbol{b} = \begin{bmatrix} 1 \\ 3 \\ 2 \end{bmatrix}$$

Find the complete solution to $A\boldsymbol{x} = \boldsymbol{b}$.

The augmented matrix matrix

becomes

$$\begin{bmatrix} 1 & 0 & 0 & 5 & | & 4 \\ 0 & 1 & 0 & -2 & 5 \\ 0 & 0 & 1 & -3 & -1 \end{bmatrix} (*)$$

The fourth column is free, and hence x_4 is a free variable. Let $x_4 = 0$. Then, one particular solution is $\boldsymbol{x_p} = \begin{bmatrix} 4 \\ 5 \\ -1 \\ 0 \end{bmatrix}$.

Now, let the last column of (*) equal to 0. Then, we have

$$x_1 = -5x_4$$
$$x_2 = 2x_4$$
$$x_3 = 3x_4.$$

Then, the special solution (nullspace solution) is $\boldsymbol{x_n} = x_4 \begin{bmatrix} -5\\ 2\\ 3\\ 1 \end{bmatrix}$.

The complete solution is $\boldsymbol{x} = \boldsymbol{x}_p + \boldsymbol{x}_n$.

2. Find the complete solution of the system

$$\begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 4 \\ 1 & 3 & 1 & 6 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 1 \\ 6 \\ 7 \end{bmatrix}.$$

The augmented matrix matrix

$\begin{bmatrix} 1\\0\\1 \end{bmatrix}$) (. :	3) 1 3	0 1 1	$\begin{array}{c c} 2 \\ 4 \\ 6 \end{array}$	1 6 7	
$egin{array}{c} 1 \\ 0 \\ 0 \end{array}$	$egin{array}{c} 3 \\ 0 \\ 0 \end{array}$	0 1 0	$2 \\ 4 \\ 0$	$\begin{vmatrix} 1\\6\\0 \end{vmatrix}$]	(*)

becomes

One particular solution is obtained by setting the free variables
$$x_2 = x_4 = 0$$
, and hence

$$\boldsymbol{x_p} = \begin{bmatrix} 1 \\ 0 \\ 6 \\ 0 \end{bmatrix}$$

Now, let the last column of (*) equal to 0. Then, we have

$$x_1 = -3x_2 + -2x_4$$

$$x_3 = -4x_4$$
Then, the special solution is $\boldsymbol{x_n} = x_2 \begin{bmatrix} -3\\1\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} -1\\0\\-4\\1 \end{bmatrix}$

The complete solution is $\boldsymbol{x} = \boldsymbol{x}_p + \boldsymbol{x}_n$.

3. Under what condition on b_1 , b_2 , b_3 is the following system solvable?

$$x_1 + 2x_2 - 2x_3 = b_1$$

$$2x_1 + 5x_2 - 4x_3 = b_2$$

$$4x_1 + 9x_2 - 8x_3 = b_3$$

Generally speaking, \boldsymbol{b} must be in the column space of the corresponding matrix. After elimination, we get

$$\begin{bmatrix} 1 & 2 & -2 & b_1 \\ 0 & 1 & 0 & b_2 - 2b_1 \\ 0 & 0 & 0 & b_3 - 2b_1 - b_2 \end{bmatrix}$$

The system is solvable only when $b_3 - 2b_1 - b_2 = 0$.

4. Choose the number q so that (if possible) the ranks of A and B are (i) 1, (ii) 2, (iii) 3:

$$A = \begin{bmatrix} 6 & 4 & 2 \\ -3 & -2 & -1 \\ 9 & 6 & q \end{bmatrix}, \qquad B = \begin{bmatrix} 3 & 1 & 3 \\ q & 2 & q \end{bmatrix}.$$

Observe that the second column of A is $\frac{2}{3}$ of the first column. So, A cannot have rank 3. When q = 3, A has rank 1. When $q \neq 3$, A has rank 2.

In B, the first column and the third column are the same no matter what q is. So, B cannot have rank 3. When q = 6, B has rank 1. When $q \neq 6$, B has rank 2.

Sec 3.4:

- 1. Consider the following subspaces Y, W, and V.
 - (a) Describe each subspace (line, plane, etc).
 - (b) Determine which of these form a **basis** for the subspace? Why or why not?
 - (c) What is the **dimension** of each subspace?

i.

$$Y = \operatorname{span}\left\{ \begin{bmatrix} 1\\4\\5 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1 \end{bmatrix} \right\}$$

Y is plane in \mathbb{R}^3 passing through origin. A basis for Y is given by:

$$\beta_Y = \left\{ \begin{bmatrix} 1\\4\\5 \end{bmatrix}, \begin{bmatrix} 2\\-1\\1 \end{bmatrix} \right\}$$

 $\dim(Y) = 2.$

ii.

$$W = \operatorname{span}\left\{ \begin{bmatrix} 1\\5 \end{bmatrix}, \begin{bmatrix} 2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\8 \end{bmatrix} \right\}$$

W spans \mathbb{R}^2 .

The set of vectors is not a basis for \mathbb{R}^2 as presented, because the vectors are not linearly independent — any two of these vectors constitutes a basis for \mathbb{R}^2 , e.g.,

$$\beta_{\mathbb{R}^2} = \left\{ \begin{bmatrix} 1\\5 \end{bmatrix}, \begin{bmatrix} 2\\-1 \end{bmatrix} \right\}$$

 $\dim(W) = 2.$

iii.

$$V = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\1\\5 \end{bmatrix}, \begin{bmatrix} 4\\0\\-1\\2 \end{bmatrix}, \begin{bmatrix} 6\\0\\1\\12 \end{bmatrix} \right\}$$

Note that ,
$$\begin{bmatrix} 6\\0\\1\\12 \end{bmatrix} = 2 \begin{bmatrix} 1\\0\\1\\5 \end{bmatrix} + \begin{bmatrix} 4\\0\\-1\\2 \end{bmatrix}.$$

Thus, the set of vectors forms a plane in \mathbb{R}^4 . A basis for V is given by:

$$\beta_V = \left\{ \begin{bmatrix} 1\\0\\1\\5 \end{bmatrix}, \begin{bmatrix} 4\\0\\-1\\2 \end{bmatrix} \right\}$$

 $\dim(V) = 2.$

2. Consider the following matrix-vector system

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 4 & 4 & 8 \\ 4 & 8 & 6 & 8 \end{bmatrix} \boldsymbol{x} = \begin{bmatrix} 4 \\ 2 \\ 10 \end{bmatrix}$$

(a) Find a **basis** for the column space of the matrix A. What is the rank of A?We do elimination, and we get the REF of A to be

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 0 & 0 & 2 & 8 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$
$$\beta_{\text{Col}A} = \left\{ \begin{bmatrix} 1 \\ 2 \\ 4 \end{bmatrix}, \begin{bmatrix} 1 \\ 4 \\ 6 \end{bmatrix} \right\}$$

The rank of A is 2.

(b) Find a basis for the row space of the matrix A.A basis for the row space is given by the nonzero rows in the REF of A.

$$\beta \operatorname{Row} A = \left\{ \begin{bmatrix} 1\\2\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\2\\8 \end{bmatrix} \right\}$$

(c) Find a **basis** for the nullspace of the matrix A. \boldsymbol{x} is in the nullspace of A if $A\boldsymbol{x} = \boldsymbol{0}$.

$$\operatorname{Nul} A = \operatorname{span} \left\{ \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 4\\0\\-4\\1 \end{bmatrix} \right\}$$

And therefore, a basis for NulA is given by:

$$\beta_{\mathrm{Nul}A} = \left\{ \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix}, \begin{bmatrix} 4\\0\\-4\\1 \end{bmatrix} \right\}$$

(d) Find the complete solution $\boldsymbol{x} = \boldsymbol{x_p} + \boldsymbol{x_n}.$ We solve the system

$$\begin{bmatrix} 1 & 2 & 1 & 0 \\ 2 & 4 & 4 & 8 \\ 4 & 8 & 6 & 8 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} = \begin{bmatrix} 4 \\ 2 \\ 10 \end{bmatrix}$$

In augmented form, this gives

$$\begin{bmatrix} 1 & 2 & 1 & 0 & | & 4 \\ 2 & 4 & 4 & 8 & 2 \\ 4 & 8 & 6 & 8 & 10 \end{bmatrix},$$

which after elimination gives

Note that x_1 and x_3 are pivot variables, while x_2 and x_4 are free variables. Thus, we obtain that $x_1 = 7 - 2x_2 + 4x_4$ and $x_3 = -3 - 4x_4$, and hence

$$\boldsymbol{x} = \boldsymbol{x}_{\boldsymbol{p}} + \boldsymbol{x}_{\boldsymbol{n}} = \begin{bmatrix} 7\\0\\-3\\0 \end{bmatrix} + x_2 \begin{bmatrix} -2\\1\\0\\0 \end{bmatrix} + x_4 \begin{bmatrix} 4\\0\\-4\\1 \end{bmatrix}.$$

(e) Choose a different x_p from the one used in Part (a). Show that $x = x_p + x_n$, with the new x_p , still solves the system.

For example, let
$$x_2 = 1$$
 and $x_4 = 0$. Then, $\begin{bmatrix} 5\\1\\-3\\0 \end{bmatrix}$ is another $\boldsymbol{x_p}$.

3. Consider the following matrix

$$A = \begin{bmatrix} 1 & 1\\ 1 & 2\\ -2 & -3 \end{bmatrix}$$

(a) What's in the nullspace of A? Since the columns of A are linearly independent, then $NulA = \{0\}$.

(b) For any \boldsymbol{b} , how many solutions do you expect $A\boldsymbol{x} = \boldsymbol{b}$ to have? Either exactly one solution or no solution.

(c) What is the condition on $\boldsymbol{b} = [b_1, b_2, b_3]$ such that $A\boldsymbol{x} = \boldsymbol{b}$ is solvable? Consider the system

$$\begin{bmatrix} 1 & 1 & b_1 \\ 1 & 2 & b_2 \\ -2 & -3 & b_3 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & -1 & b_3 + 2b_1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & b_1 \\ 0 & 1 & b_2 - b_1 \\ 0 & 0 & b_3 + b_2 + b_1 \end{bmatrix}$$

Hence, the system is solvable when $b_1 + b_2 + b_3 = 0$.

4. Consider the following matrix

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 4 & 6 \\ 0 & 0 & 0 & 1 & 2 \end{bmatrix}$$

(a) If $\boldsymbol{b} = \begin{bmatrix} 3 \\ 6 \\ \beta \end{bmatrix}$, for what values of the scalar β will $A\boldsymbol{x} = \boldsymbol{b}$ have a solution?

In augmented form, the system becomes

Γ	0	1	2	3	4	3	
	0	1	2	4	6	6	
	0	0	0	1	2	$egin{array}{c} 3 \ 6 \ eta \end{array}$	

We do elimination, and we get

0	1	2	3	4	3	
0	0	0	1	2	3	
0	0	0	1	2	$egin{array}{c} 3 \ 3 \ eta \end{array} \ eta \end{array}$	

Hence, for the system to be solvable, β must be 3.

(b) For the β from part (a), find the **complete** solution to $A\mathbf{x} = \mathbf{b}$. Let $\beta = 3$ and solve

Γ	0	1	2	3	4	3		0	1	2	3	4	3	
	0	0	0	1	2	3	\rightarrow	0	0	0	1	2	3	
L	0	0	0	1	2	3		0	0	0	0	0	0	

Hence, x_1 , x_3 , and x_5 are free variables.

Row 2: $x_4 = 3 - 2x_5$

Row 1:
$$x_2 = 3 - 2x_3 - 3x_4 - 4x_5 = 3 - 2x_3 - 3(3 - 2x_5) - 4x_5 \implies x_2 = -6 - 2x_3 + 2x_5$$

Thus, the complete solution is given by: $\begin{bmatrix} 0 \\ 1 \end{bmatrix} \begin{bmatrix} 1 \\ 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

$$\boldsymbol{x} = \boldsymbol{x}_{\boldsymbol{p}} + \boldsymbol{x}_{\boldsymbol{n}} = \begin{bmatrix} 0 \\ -6 \\ 0 \\ 3 \\ 0 \end{bmatrix} + x_1 \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} + x_3 \begin{bmatrix} 0 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} 0 \\ 2 \\ 0 \\ -2 \\ 1 \end{bmatrix}$$