Sec 3.3:

1. Consider

$$
A=\left[\begin{array}{cccc}
1 & 0 & 3 & -4 \\
-2 & 1 & -6 & 6 \\
1 & 0 & 2 & -1
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
1 \\
3 \\
2
\end{array}\right]
$$

Find the complete solution to $A \boldsymbol{x}=\boldsymbol{b}$.
The augmented matrix matrix

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 3 & -4 & 1 \\
-2 & 1 & -6 & 6 & 3 \\
1 & 0 & 2 & -1 & 2
\end{array}\right]
$$

becomes

$$
\left[\begin{array}{rrrr|r}
1 & 0 & 0 & 5 & 4 \\
0 & 1 & 0 & -2 & 5 \\
0 & 0 & 1 & -3 & -1
\end{array}\right](*)
$$

The fourth column is free, and hence x_{4} is a free variable. Let $x_{4}=0$. Then, one particular solution is $\boldsymbol{x}_{\boldsymbol{p}}=\left[\begin{array}{c}4 \\ 5 \\ -1 \\ 0\end{array}\right]$.
Now, let the last column of $(*)$ equal to 0 . Then, we have

$$
\begin{aligned}
x_{1} & =-5 x_{4} \\
x_{2} & =2 x_{4} \\
x_{3} & =3 x_{4} .
\end{aligned}
$$

Then, the special solution (nullspace solution) is $\boldsymbol{x}_{\boldsymbol{n}}=x_{4}\left[\begin{array}{c}-5 \\ 2 \\ 3 \\ 1\end{array}\right]$.
The complete solution is $\boldsymbol{x}=\boldsymbol{x}_{\boldsymbol{p}}+\boldsymbol{x}_{\boldsymbol{n}}$.
2. Find the complete solution of the system

$$
\left[\begin{array}{llll}
1 & 3 & 0 & 2 \\
0 & 0 & 1 & 4 \\
1 & 3 & 1 & 6
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{l}
1 \\
6 \\
7
\end{array}\right] .
$$

The augmented matrix matrix

$$
\left[\begin{array}{llll|l}
1 & 3 & 0 & 2 & 1 \\
0 & 0 & 1 & 4 & 6 \\
1 & 3 & 1 & 6 & 7
\end{array}\right]
$$

becomes

$$
\left[\begin{array}{llll|l}
1 & 3 & 0 & 2 & 1 \\
0 & 0 & 1 & 4 & 6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right](*)
$$

One particular solution is obtained by setting the free variables $x_{2}=x_{4}=0$, and hence

$$
\boldsymbol{x}_{\boldsymbol{p}}=\left[\begin{array}{c}
1 \\
0 \\
6 \\
0
\end{array}\right]
$$

Now, let the last column of $(*)$ equal to 0 . Then, we have

$$
\begin{gathered}
x_{1}=-3 x_{2}+-2 x_{4} \\
x_{3}=-4 x_{4}
\end{gathered}
$$

Then, the special solution is $\boldsymbol{x}_{\boldsymbol{n}}=x_{2}\left[\begin{array}{c}-3 \\ 1 \\ 0 \\ 0\end{array}\right]+x_{4}\left[\begin{array}{c}-1 \\ 0 \\ -4 \\ 1\end{array}\right]$
The complete solution is $\boldsymbol{x}=\boldsymbol{x}_{\boldsymbol{p}}+\boldsymbol{x}_{\boldsymbol{n}}$.
3. Under what condition on b_{1}, b_{2}, b_{3} is the following system solvable?

$$
\begin{aligned}
x_{1}+2 x_{2}-2 x_{3} & =b_{1} \\
2 x_{1}+5 x_{2}-4 x_{3} & =b_{2} \\
4 x_{1}+9 x_{2}-8 x_{3} & =b_{3}
\end{aligned}
$$

Generally speaking, \boldsymbol{b} must be in the column space of the corresponding matrix.
After elimination, we get

$$
\left[\begin{array}{rrr|l}
1 & 2 & -2 & b_{1} \\
0 & 1 & 0 & b_{2}-2 b_{1} \\
0 & 0 & 0 & b_{3}-2 b_{1}-b_{2}
\end{array}\right]
$$

The system is solvable only when $b_{3}-2 b_{1}-b_{2}=0$.
4. Choose the number q so that (if possible) the ranks of A and B are (i) 1 , (ii) 2 , (iii) 3 :

$$
A=\left[\begin{array}{ccc}
6 & 4 & 2 \\
-3 & -2 & -1 \\
9 & 6 & q
\end{array}\right], \quad B=\left[\begin{array}{lll}
3 & 1 & 3 \\
q & 2 & q
\end{array}\right]
$$

Observe that the second column of A is $\frac{2}{3}$ of the first column. So, A cannot have rank 3. When $q=3$, A has rank 1 . When $q \neq 3$, A has rank 2 .

In B, the first column and the third column are the same no matter what q is.
So, B cannot have rank 3 . When $q=6$, B has rank 1 . When $q \neq 6$, B has rank 2 .

Sec 3.4:

1. Consider the following subspaces Y, W, and V.
(a) Describe each subspace (line, plane, etc).
(b) Determine which of these form a basis for the subspace? Why or why not?
(c) What is the dimension of each subspace?
i.

$$
Y=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
4 \\
5
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]\right\}
$$

Y is plane in \mathbb{R}^{3} passing through origin.
A basis for Y is given by:

$$
\beta_{Y}=\left\{\left[\begin{array}{l}
1 \\
4 \\
5
\end{array}\right],\left[\begin{array}{c}
2 \\
-1 \\
1
\end{array}\right]\right\}
$$

$\operatorname{dim}(Y)=2$.
ii.

$$
W=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
5
\end{array}\right],\left[\begin{array}{c}
2 \\
-1
\end{array}\right],\left[\begin{array}{l}
1 \\
8
\end{array}\right]\right\}
$$

W spans \mathbb{R}^{2}.
The set of vectors is not a basis for \mathbb{R}^{2} as presented, because the vectors are not linearly independent - any two of these vectors constitutes a basis for \mathbb{R}^{2}, e.g.,

$$
\beta_{\mathbb{R}^{2}}=\left\{\left[\begin{array}{l}
1 \\
5
\end{array}\right],\left[\begin{array}{c}
2 \\
-1
\end{array}\right]\right\}
$$

$\operatorname{dim}(W)=2$.
iii.

$$
V=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
5
\end{array}\right],\left[\begin{array}{c}
4 \\
0 \\
-1 \\
2
\end{array}\right],\left[\begin{array}{c}
6 \\
0 \\
1 \\
12
\end{array}\right]\right\}
$$

Note that,$\left[\begin{array}{c}6 \\ 0 \\ 1 \\ 12\end{array}\right]=2\left[\begin{array}{l}1 \\ 0 \\ 1 \\ 5\end{array}\right]+\left[\begin{array}{c}4 \\ 0 \\ -1 \\ 2\end{array}\right]$.
Thus, the set of vectors forms a plane in \mathbb{R}^{4}.
A basis for V is given by:

$$
\beta_{V}=\left\{\left[\begin{array}{l}
1 \\
0 \\
1 \\
5
\end{array}\right],\left[\begin{array}{c}
4 \\
0 \\
-1 \\
2
\end{array}\right]\right\}
$$

$\operatorname{dim}(V)=2$.
2. Consider the following matrix-vector system

$$
\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 4 & 4 & 8 \\
4 & 8 & 6 & 8
\end{array}\right] \boldsymbol{x}=\left[\begin{array}{c}
4 \\
2 \\
10
\end{array}\right]
$$

(a) Find a basis for the column space of the matrix A. What is the rank of A ?

We do elimination, and we get the REF of A to be

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 2 & 1 & 0 \\
0 & 0 & 2 & 8 \\
0 & 0 & 0 & 0
\end{array}\right]} \\
\beta_{\mathrm{Col} A}=\left\{\left[\begin{array}{l}
1 \\
2 \\
4
\end{array}\right],\left[\begin{array}{l}
1 \\
4 \\
6
\end{array}\right]\right\}
\end{gathered}
$$

The rank of A is 2 .
(b) Find a basis for the row space of the matrix A.

A basis for the row space is given by the nonzero rows in the REF of A.

$$
\beta \text { Row } A=\left\{\left[\begin{array}{l}
1 \\
2 \\
1 \\
0
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
2 \\
8
\end{array}\right]\right\}
$$

(c) Find a basis for the nullspace of the matrix A.
\boldsymbol{x} is in the nullspace of A if $A \boldsymbol{x}=\mathbf{0}$.

$$
\operatorname{Nul} A=\operatorname{span}\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
4 \\
0 \\
-4 \\
1
\end{array}\right]\right\}
$$

And therefore, a basis for $\mathrm{Nul} A$ is given by:

$$
\beta_{\mathrm{Nul} A}=\left\{\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
4 \\
0 \\
-4 \\
1
\end{array}\right]\right\}
$$

(d) Find the complete solution $\boldsymbol{x}=\boldsymbol{x}_{\boldsymbol{p}}+\boldsymbol{x}_{\boldsymbol{n}}$.

We solve the system

$$
\left[\begin{array}{llll}
1 & 2 & 1 & 0 \\
2 & 4 & 4 & 8 \\
4 & 8 & 6 & 8
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{c}
4 \\
2 \\
10
\end{array}\right]
$$

In augmented form, this gives

$$
\left[\begin{array}{rrrr|r}
1 & 2 & 1 & 0 & 4 \\
2 & 4 & 4 & 8 & 2 \\
4 & 8 & 6 & 8 & 10
\end{array}\right],
$$

which after elimination gives

$$
\left[\begin{array}{llll|r}
1 & 2 & 1 & 0 & 4 \\
0 & 0 & 2 & 8 & -6 \\
0 & 0 & 0 & 0 & 0
\end{array}\right] .
$$

Note that x_{1} and x_{3} are pivot variables, while x_{2} and x_{4} are free variables. Thus, we obtain that $x_{1}=7-2 x_{2}+4 x_{4}$ and $x_{3}=-3-4 x_{4}$, and hence

$$
\boldsymbol{x}=\boldsymbol{x}_{\boldsymbol{p}}+\boldsymbol{x}_{\boldsymbol{n}}=\left[\begin{array}{c}
7 \\
0 \\
-3 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{4}\left[\begin{array}{c}
4 \\
0 \\
-4 \\
1
\end{array}\right] .
$$

(e) Choose a different $\boldsymbol{x}_{\boldsymbol{p}}$ from the one used in Part (a). Show that $\boldsymbol{x}=\boldsymbol{x}_{\boldsymbol{p}}+\boldsymbol{x}_{\boldsymbol{n}}$, with the new $\boldsymbol{x}_{\boldsymbol{p}}$, still solves the system.
For example, let $x_{2}=1$ and $x_{4}=0$. Then, $\left[\begin{array}{c}5 \\ 1 \\ -3 \\ 0\end{array}\right]$ is another $\boldsymbol{x}_{\boldsymbol{p}}$.
3. Consider the following matrix

$$
A=\left[\begin{array}{cc}
1 & 1 \\
1 & 2 \\
-2 & -3
\end{array}\right]
$$

(a) What's in the nullspace of A ?

Since the columns of A are linearly independent, then $\operatorname{Nul} A=\{\mathbf{0}\}$.
(b) For any \boldsymbol{b}, how many solutions do you expect $A \boldsymbol{x}=\boldsymbol{b}$ to have?

Either exactly one solution or no solution.
(c) What is the condition on $\boldsymbol{b}=\left[b_{1}, b_{2}, b_{3}\right]$ such that $A \boldsymbol{x}=\boldsymbol{b}$ is solvable?

Consider the system

$$
\left[\begin{array}{rr|r}
1 & 1 & b_{1} \\
1 & 2 & b_{2} \\
-2 & -3 & b_{3}
\end{array}\right] \rightarrow\left[\begin{array}{rr|l}
1 & 1 & b_{1} \\
0 & 1 & b_{2}-b_{1} \\
0 & -1 & b_{3}+2 b_{1}
\end{array}\right] \rightarrow\left[\begin{array}{ll|l}
1 & 1 & b_{1} \\
0 & 1 & b_{2}-b_{1} \\
0 & 0 & b_{3}+b_{2}+b_{1}
\end{array}\right]
$$

Hence, the system is solvable when $b_{1}+b_{2}+b_{3}=0$.
4. Consider the following matrix

$$
A=\left[\begin{array}{lllll}
0 & 1 & 2 & 3 & 4 \\
0 & 1 & 2 & 4 & 6 \\
0 & 0 & 0 & 1 & 2
\end{array}\right]
$$

(a) If $\boldsymbol{b}=\left[\begin{array}{l}3 \\ 6 \\ \beta\end{array}\right]$, for what values of the scalar β will $A \boldsymbol{x}=\boldsymbol{b}$ have a solution?

In augmented form, the system becomes

$$
\left[\begin{array}{lllll|l}
0 & 1 & 2 & 3 & 4 & 3 \\
0 & 1 & 2 & 4 & 6 & 6 \\
0 & 0 & 0 & 1 & 2 & \beta
\end{array}\right]
$$

We do elimination, and we get

$$
\left[\begin{array}{lllll|l}
0 & 1 & 2 & 3 & 4 & 3 \\
0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 2 & \beta
\end{array}\right]
$$

Hence, for the system to be solvable, β must be 3 .
(b) For the β from part (a), find the complete solution to $A \boldsymbol{x}=\boldsymbol{b}$.

Let $\beta=3$ and solve

$$
\left[\begin{array}{lllll|l}
0 & 1 & 2 & 3 & 4 & 3 \\
0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 1 & 2 & 3
\end{array}\right] \rightarrow\left[\begin{array}{rrrrr|l}
0 & 1 & 2 & 3 & 4 & 3 \\
0 & 0 & 0 & 1 & 2 & 3 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Hence, x_{1}, x_{3}, and x_{5} are free variables.
Row 2: $x_{4}=3-2 x_{5}$
Row 1: $x_{2}=3-2 x_{3}-3 x_{4}-4 x_{5}=3-2 x_{3}-3\left(3-2 x_{5}\right)-4 x_{5} \Longrightarrow x_{2}=-6-2 x_{3}+2 x_{5}$

Thus, the complete solution is given by:

$$
\boldsymbol{x}=\boldsymbol{x}_{\boldsymbol{p}}+\boldsymbol{x}_{\boldsymbol{n}}=\left[\begin{array}{c}
0 \\
-6 \\
0 \\
3 \\
0
\end{array}\right]+x_{1}\left[\begin{array}{l}
1 \\
0 \\
0 \\
0 \\
0
\end{array}\right]+x_{3}\left[\begin{array}{c}
0 \\
-2 \\
1 \\
0 \\
0
\end{array}\right]+x_{5}\left[\begin{array}{c}
0 \\
2 \\
0 \\
-2 \\
1
\end{array}\right]
$$

