Sec 3.1:

1. Which of the following subsets of \mathbb{R}^{3} are subspaces? Justify your answer.
(a) The plane of vectors $\left(b_{1}, b_{2}, b_{3}\right)$ that satisfy $b_{1}=0$.

Let $B=\left\{\boldsymbol{b} \in \mathbb{R}^{3}: b_{1}=0\right\}$
$\mathbf{0} \in B$ (evident)
Let $\boldsymbol{u}=\left(\begin{array}{c}0 \\ u_{2} \\ u_{3}\end{array}\right), \boldsymbol{v}=\left(\begin{array}{c}0 \\ v_{2} \\ v_{3}\end{array}\right)$, and $a, b \in \mathbb{R}$

$$
a \boldsymbol{u}+b \boldsymbol{v}=\left(\begin{array}{c}
0 \\
a u_{1} \\
a u_{2}
\end{array}\right)+\left(\begin{array}{c}
0 \\
b v_{2} \\
b v_{3}
\end{array}\right)=\left(\begin{array}{c}
0 \\
a u_{1}+b v_{1} \\
a u_{2}+b u_{2}
\end{array}\right) \in B
$$

$\therefore \mathrm{B}$ is a subspace.
(b) The plane of vectors $\left(b_{1}, b_{2}, b_{3}\right)$ that satisfy $b_{1}=1$.

Let $V=\left\{\boldsymbol{v} \in \mathbb{R}^{3}: v_{1}=1\right\}$
(1) $\left(\begin{array}{c}1 \\ v_{2} \\ v_{3}\end{array}\right)+\left(\begin{array}{c}1 \\ w_{2} \\ w_{3}\end{array}\right)=\left(\begin{array}{c}2 \\ v_{2}+w_{2} \\ v_{3}+w_{3}\end{array}\right) \notin V$. So, V is not closed under addition.
(2) $c\left(\begin{array}{c}1 \\ v_{2} \\ v_{3}\end{array}\right)=\left(\begin{array}{c}c \\ c v_{2} \\ c v_{3}\end{array}\right) \notin V$. So, V is not closed under scalar multiplication.
(3) $\left(\begin{array}{l}0 \\ 0 \\ 0\end{array}\right) \notin V$.

Any one of these is sufficient to show that V is not a subspace.
(c) All combinations of two given vectors $(1,1,0)$ and $(2,0,1)$.

First, observe that $\mathbf{0}$ is a linear combination of any two vectors, in particular the given ones.

$$
\begin{gathered}
\alpha\left(a\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+b\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)\right)+\beta\left(c\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+d\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)\right) \\
=\alpha a\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\alpha b\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)+\beta c\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+\beta d\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right) \\
=(\alpha a+\beta c)\left(\begin{array}{l}
1 \\
1 \\
0
\end{array}\right)+(\alpha b+\beta d)\left(\begin{array}{l}
2 \\
0 \\
1
\end{array}\right)
\end{gathered}
$$

\therefore It is a subspace.
(d) The plane of vectors $\left(b_{1}, b_{2}, b_{3}\right)$ that satisfy $b_{3}-b_{2}+3 b_{1}=0$.

Let $U=\left\{u \in \mathbb{R}^{3}: u_{3}-u_{2}+3 u_{1}=0\right\}$. Observe that $\mathbf{0} \in U$ since $0-0+3(0)=0$. Let $\boldsymbol{u}, \boldsymbol{v} \in U$. Then

$$
\begin{gathered}
a \boldsymbol{u}+b \boldsymbol{v}=\left(\begin{array}{l}
a u_{1}+b v_{1} \\
a u_{2}+b v_{2} \\
a u_{3}+b v_{3}
\end{array}\right) \\
a u_{3}+b v_{3}-\left(a u_{2}+b v_{2}\right)+3\left(a u_{1}+b v_{1}\right)=\left(a u_{3}-a u_{2}+3 a u_{1}\right)+\left(b v_{3}-b v_{2}+3 b v_{1}\right) \\
=a\left(u_{3}-u_{2}+3 u_{1}\right)+b\left(v_{3}-v_{2}+3 v_{1}\right)=0 a+0 b=0 \\
\Longrightarrow a \boldsymbol{u}+b \boldsymbol{v} \in U .
\end{gathered}
$$

$\therefore \mathrm{U}$ is a subspace.
2. The set $W \subseteq \mathbb{R}^{3}$ is the set of all vectors $x=\left(x_{1}, x_{2}, x_{3}\right) \in \mathbb{R}^{3}$ whose coordinates satisfy

$$
\begin{gathered}
x_{1}-x_{2}+2 x_{3}=0 \\
3 x_{2}-x_{3}=0
\end{gathered}
$$

Determine if W is a subspace of \mathbb{R}^{3}.

First note that the zero vector in \mathbb{R}^{3} is in W since its components verify both equations above. Solving the system we have:

$$
\begin{gathered}
3 x_{2}-x_{3}=0 \Longrightarrow x_{3}=3 x_{2} \\
\Longrightarrow x_{1}-x_{2}+2\left(3 x_{2}\right)=0 \Longrightarrow x_{1}=-5 x_{2}
\end{gathered}
$$

So, $W=\left\{\boldsymbol{x} \in \mathbb{R}^{3}: \boldsymbol{x}=t(-5,1,3), t \in \mathbb{R}\right\}$

$$
\begin{gathered}
a\left(t_{1}\left(\begin{array}{c}
-5 \\
1 \\
3
\end{array}\right)\right)+b\left(t_{2}\left(\begin{array}{c}
-5 \\
1 \\
3
\end{array}\right)\right) \\
=a t_{1}\left(\begin{array}{c}
-5 \\
1 \\
3
\end{array}\right)+b t_{2}\left(\begin{array}{c}
-5 \\
1 \\
3
\end{array}\right) \\
=\left(a t_{1}+b t_{2}\right)\left(\begin{array}{c}
-5 \\
1 \\
3
\end{array}\right) \in W
\end{gathered}
$$

$\therefore W$ is a subspace of \mathbb{R}^{3}
3. (a) Show that the set of nonsingular 2×2 matrices is not a subspace.

Nonsingular \Longleftrightarrow Invertible

- $\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$ is not invertible and therefore not in the set.
- $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]+\left[\begin{array}{cc}-1 & 0 \\ 0 & -1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. So the set is not closed under addition.
- $0\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]=\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]$. So the set is not closed under scalar multiplication.

Any one of the these is sufficient to show that this set is not a subspace.
(b) Show also that the set of singular 2×2 matrices is not a subspace.

Singular \Longleftrightarrow Not invertible

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right]+\left[\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]
$$

Which is invertible. So the set is not closed under addition.

Therefore, the set is not a subspace.
4. Describe the column spaces (lines or planes) of these particular matrices:

$$
A=\left[\begin{array}{ll}
1 & 2 \\
0 & 0 \\
0 & 0
\end{array}\right] \quad B=\left[\begin{array}{ll}
1 & 0 \\
0 & 2 \\
0 & 0
\end{array}\right] \quad C=\left[\begin{array}{ll}
1 & 0 \\
2 & 0 \\
0 & 0
\end{array}\right]
$$

The column space is the set of all combinations of the columns.

$$
\begin{aligned}
& C(A)=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
2 \\
0 \\
0
\end{array}\right)\right\}=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right)\right\} . \text { This is a line. } \\
& \boldsymbol{C}(B)=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
0 \\
0
\end{array}\right),\left(\begin{array}{l}
0 \\
2 \\
0
\end{array}\right)\right\} . \text { This is a plane. } \\
& \boldsymbol{C}(C)=\operatorname{Span}\left\{\left(\begin{array}{l}
1 \\
2 \\
0
\end{array}\right)\right\} . \text { This is a line. }
\end{aligned}
$$

Sec 3.2:

1. Consider the following matrix

$$
A=\left[\begin{array}{cccc}
1 & 0 & 3 & -4 \\
-2 & 1 & -6 & 6 \\
1 & 0 & 2 & -1
\end{array}\right]
$$

(a) Perform elimination on A until upper triangular matrix appears.

$$
A=\left[\begin{array}{cccc}
1 & 0 & 3 & -4 \\
-2 & 1 & -6 & 6 \\
1 & 0 & 2 & -1
\end{array}\right] \xrightarrow{R_{2}+2 R_{1} \& R_{3}-R_{1}}\left[\begin{array}{cccc}
1 & 0 & 3 & -4 \\
0 & 1 & 0 & -2 \\
0 & 0 & -1 & 3
\end{array}\right]
$$

(b) Identify the pivot columns (put a square around the pivots) and the free columns (circle the whole column). What are the free variables? What are the pivot variables?
x_{4} is the free variable. x_{1}, x_{2}, and x_{3} are the pivot variables.
(c) Perform back substitution, writing the pivot variables in terms of the free variables.

$$
\begin{gathered}
x_{1}+3 x_{3}-4 x_{4}=0 \\
x_{2}-2 x_{4}=0 \\
-x_{3}+3 x_{4}=0
\end{gathered}
$$

$$
\Longrightarrow x_{3}=3 x_{4}, x_{2}=2 x_{4}, \text { and } x_{1}=-9 x_{4}+4 x_{4}=-5 x_{4} .
$$

So,

$$
\boldsymbol{x}=x_{4}\left(\begin{array}{c}
-5 \\
2 \\
3 \\
1
\end{array}\right)
$$

(d) Describe the nullspace of A.

$$
\operatorname{Nul}(A)=\operatorname{Span}\left\{\left(\begin{array}{c}
-5 \\
2 \\
3 \\
1
\end{array}\right)\right\}
$$

2. Consider the following matrices

$$
A=\left[\begin{array}{llll}
2 & 4 & 6 & 4 \\
2 & 5 & 7 & 6 \\
2 & 3 & 5 & 2
\end{array}\right] \quad B=\left[\begin{array}{cccc}
1 & 2 & 2 & 4 \\
3 & 8 & 6 & 16
\end{array}\right]
$$

(a) Compute $\operatorname{REF}(A)$ and $\operatorname{REF}(B)$. What are the ranks of A and B ?

$$
\begin{gathered}
\operatorname{REF}(A):\left[\begin{array}{llll}
2 & 4 & 6 & 4 \\
2 & 5 & 7 & 6 \\
2 & 3 & 5 & 2
\end{array}\right] \xrightarrow{R_{2}-R_{1} \& R_{3}-R_{1}}\left[\begin{array}{cccc}
2 & 4 & 6 & 4 \\
0 & 1 & 1 & 2 \\
0 & -1 & -1 & -2
\end{array}\right] \xrightarrow{R_{3}+R_{2}}\left[\begin{array}{llll}
2 & 4 & 6 & 4 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] \\
\xrightarrow{\frac{1}{2} R_{1}}\left[\begin{array}{llll}
1 & 2 & 3 & 2 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]
\end{gathered}
$$

$\operatorname{Rank}(A)=2$
$\operatorname{REF}(B):\left[\begin{array}{cccc}1 & 2 & 2 & 4 \\ 3 & 8 & 6 & 16\end{array}\right] \xrightarrow{R_{2}-3 R_{1}}\left[\begin{array}{llll}1 & 2 & 2 & 4 \\ 0 & 2 & 0 & 4\end{array}\right] \xrightarrow{\frac{1}{2} R_{2}}\left[\begin{array}{llll}1 & 2 & 2 & 4 \\ 0 & 1 & 0 & 2\end{array}\right]$
$\operatorname{Rank}(B)=2$
(b) Find $\operatorname{Col} A$, and describe it geometrically.

$$
\mathrm{Col} A=\operatorname{Span}\left\{\left(\begin{array}{l}
2 \\
2 \\
2
\end{array}\right),\left(\begin{array}{l}
4 \\
5 \\
3
\end{array}\right)\right\} . \text { A plane in } \mathbb{R}^{3} .
$$

(c) Find $\operatorname{Col} B$, and describe it geometrically.

$$
\operatorname{Col} B=\operatorname{Span}\left\{\binom{1}{3},\binom{2}{8}\right\} . \text { A plane in } \mathbb{R}^{2} \text {, i.e., all of } \mathbb{R}^{2} .
$$

(d) Compute $\operatorname{RREF}(A)$ and $\operatorname{RREF}(B)$.

$$
\begin{aligned}
& \operatorname{RREF}(A):\left[\begin{array}{llll}
1 & 2 & 3 & 2 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] \xrightarrow{R_{1}-2 R_{2}}\left[\begin{array}{cccc}
1 & 0 & 1 & -2 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \operatorname{RREF}(B):\left[\begin{array}{llll}
1 & 2 & 2 & 4 \\
0 & 1 & 0 & 2
\end{array}\right] \xrightarrow{R_{1}-2 R_{2}}\left[\begin{array}{lllc}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2
\end{array}\right]
\end{aligned}
$$

(e) Find $\operatorname{Nul} A$, and describe it geometrically.

$$
\begin{gathered}
{\left[\begin{array}{cccc}
1 & 0 & 1 & -2 \\
0 & 1 & 1 & 2 \\
0 & 0 & 0 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\mathbf{0} \Longrightarrow \begin{array}{l}
x_{1}+x_{3}-2 x_{4}=0 \\
x_{2}+x_{3}+2 x_{4}=0
\end{array} \Longrightarrow \begin{array}{c}
x_{1}=-x_{3}+2 x_{4} \\
x_{2}=-x_{3}-2 x_{4} \\
x_{3}=\text { free } \\
x_{4}=\text { free }
\end{array}} \\
\boldsymbol{x}=\left(\begin{array}{c}
-x_{3}+2 x_{4} \\
-x_{3}-2 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
2 \\
-2 \\
0 \\
1
\end{array}\right) \\
\operatorname{Nul} A=\operatorname{Span}\left\{\left(\begin{array}{c}
-1 \\
-1 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
2 \\
-2 \\
0 \\
1
\end{array}\right)\right\} . \text { A plane in } \mathbb{R}^{4}
\end{gathered}
$$

(f) Find $\operatorname{Nul} B$, and describe it geometrically.

$$
\begin{gathered}
{\left[\begin{array}{llll}
1 & 0 & 2 & 0 \\
0 & 1 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\mathbf{0} \Longrightarrow \begin{array}{l}
x_{1}+2 x_{3}=0 \\
x_{2}+2 x_{4}=0
\end{array} \begin{array}{l}
x_{1}=-2 x_{3} \\
x_{2}=-2 x_{4} \\
x_{3}=\text { free } \\
x_{4}=\text { free }
\end{array}} \\
\boldsymbol{x}=\left(\begin{array}{c}
-2 x_{3} \\
-2 x_{4} \\
x_{3} \\
x_{4}
\end{array}\right)=x_{3}\left(\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right)+x_{4}\left(\begin{array}{c}
0 \\
-2 \\
0 \\
1
\end{array}\right) \\
\operatorname{Nul} B=\operatorname{Span}\left\{\left(\begin{array}{c}
-2 \\
0 \\
1 \\
0
\end{array}\right),\left(\begin{array}{c}
0 \\
-2 \\
0 \\
1
\end{array}\right)\right\} . \text { A plane in } \mathbb{R}^{4}
\end{gathered}
$$

