Sec 2.5:

1. Suppose A is invertible, and you exchange its first two rows to reach B.
(a) Is the new matrix B invertible? Why?

The inverse exists iff elimination produces \mathbf{n} pivots (row exchanges are allowed)
Therefore, \exists elimination matrices s.t. $E_{n} E_{n-1} \ldots E_{2} E_{1} P A=U$ where U has none zero diagonal elements.

$$
B=P_{12} A \Rightarrow A=P_{12} B \Rightarrow E_{n} E_{n-1} \ldots E_{2} E_{1} P P_{12} B=U
$$

Thus, elimination of B produces n pivots $\Rightarrow \mathrm{B}$ is invertible.
(b) How would you find B^{-1} from A^{-1} ? $B^{-1}=\left(P_{12} A\right)^{-1}=A^{-1} P_{12}^{-1}=A^{-1} P_{12}^{T}=A^{-1} P_{12}$
2. If the product $M=A B C$ of three matrices is invertible, then A, B, and C are invertible. Find a formula for B^{-1} that involves M^{-1}, A, and C.
$M=A B C \Rightarrow A^{-1} M=B C \Rightarrow A^{-1} M C^{-1}=B \Rightarrow B^{-1}=\left(A^{-1} M C^{-1}\right)^{-1} \Rightarrow B=$ $C M^{-1} A$
3. For which three numbers c is this matrix not invertible, and why not?

$$
\begin{aligned}
& A=\left[\begin{array}{lll}
2 & c & c \\
c & c & c \\
8 & 7 & c
\end{array}\right] \\
& A=\left(\begin{array}{lll}
2 & c & c \\
c & c & c \\
8 & 7 & c
\end{array}\right) \rightarrow\left(\begin{array}{ccc}
2-c & 0 & 0 \\
c & c & c \\
8 & 7 & c
\end{array}\right) \xrightarrow{c \neq 0}\left(\begin{array}{ccc}
2-c & 0 & 0 \\
1 & 1 & 1 \\
8 & 7 & c
\end{array}\right) \xrightarrow{c \neq 2}\left(\begin{array}{ccc}
2-c & 0 & 0 \\
0 & 1 & 1 \\
0 & 7 & c
\end{array}\right) \\
& \rightarrow\left(\begin{array}{ccc}
2-c & 0 & 0 \\
0 & 1 & 1 \\
0 & 0 & c-7
\end{array}\right)
\end{aligned}
$$

Therefore, we need $c \neq 0,2,7$ to make A invertible
4. Find the inverse using Gauss-Jordan elimination:

$$
A=\left[\begin{array}{ccc}
2 & 1 & -1 \\
0 & 3 & 1 \\
-2 & 0 & 2
\end{array}\right] \quad B=\left[\begin{array}{ccc}
2 & 1 & -1 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]
$$

$$
\begin{aligned}
& \begin{array}{l}
{[A \mid I] \rightarrow\left[I \mid A^{-1}\right]} \\
{[A \mid I]=\left(\begin{array}{cccccc}
2 & 1 & -1 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 & 1 & 0 \\
-2 & 0 & 2 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
2 & 1 & -1 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 & 1 & 0 \\
0 & 1 & 1 & 1 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
2 & 1 & -1 & 1 & 0 & 0 \\
0 & 3 & 1 & 0 & 1 & 0 \\
0 & 0 & \frac{2}{3} & 1 & -\frac{1}{3} & 1
\end{array}\right)}
\end{array} \\
& \rightarrow\left(\begin{array}{cccccc}
1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & \frac{1}{3} & 0 & \frac{1}{3} & 0 \\
0 & 0 & 1 & \frac{3}{2} & -\frac{1}{2} & \frac{3}{2}
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
0 & 0 & 1 & \frac{3}{2} & -\frac{1}{2} & \frac{3}{2}
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & \frac{1}{2} & 0 & \frac{5}{4} & -\frac{1}{4} & \frac{3}{4} \\
0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
0 & 0 & 1 & \frac{3}{2} & -\frac{1}{2} & \frac{3}{2}
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & \frac{3}{2} & -\frac{1}{2} & 1 \\
0 & 1 & 0 & -\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
0 & 0 & 1 & \frac{3}{2} & -\frac{1}{2} & \frac{3}{2}
\end{array}\right) \Rightarrow A^{-1}=\left(\begin{array}{ccc}
\frac{3}{2} & -\frac{1}{2} & 1 \\
-\frac{1}{2} & \frac{1}{2} & -\frac{1}{2} \\
\frac{3}{2} & -\frac{1}{2} & \frac{3}{2}
\end{array}\right)^{2} \\
& {[B \mid I]=\left(\begin{array}{cccccc}
2 & 1 & -1 & 1 & 0 & 0 \\
-1 & 2 & -1 & 0 & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
-1 & 2 & -1 & 0 & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & \frac{5}{2} & -\frac{3}{2} & \frac{1}{2} & 1 & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right)} \\
& \rightarrow\left(\begin{array}{cccccc}
1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & -\frac{3}{5} & \frac{1}{5} & \frac{2}{5} & 0 \\
0 & -1 & 2 & 0 & 0 & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & -\frac{3}{5} & \frac{1}{5} & \frac{2}{5} & 0 \\
0 & 0 & \frac{7}{5} & \frac{1}{5} & \frac{2}{5} & 1
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & -\frac{3}{5} & \frac{1}{5} & \frac{2}{5} & 0 \\
0 & 0 & 1 & \frac{1}{7} & \frac{2}{7} & \frac{5}{7}
\end{array}\right) \\
& \rightarrow\left(\begin{array}{cccccc}
1 & \frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & 0 & 0 \\
0 & 1 & 0 & \frac{2}{7} & \frac{4}{7} & \frac{3}{7} \\
0 & 0 & 1 & \frac{1}{7} & \frac{2}{7} & \frac{5}{7}
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & \frac{1}{2} & 0 & \frac{4}{7} & \frac{1}{7} & \frac{5}{14} \\
0 & 1 & 0 & \frac{2}{7} & \frac{4}{7} & \frac{3}{7} \\
0 & 0 & 1 & \frac{1}{7} & \frac{2}{7} & \frac{5}{7}
\end{array}\right) \rightarrow\left(\begin{array}{cccccc}
1 & 0 & 0 & \frac{3}{7} & -\frac{1}{7} & \frac{1}{7} \\
0 & 1 & 0 & \frac{2}{7} & \frac{4}{7} & \frac{3}{7} \\
0 & 0 & 1 & \frac{1}{7} & \frac{2}{7} & \frac{5}{7}
\end{array}\right) \\
& \Rightarrow B^{-1}=\left(\begin{array}{ccc}
\frac{3}{7} & -\frac{1}{7} & \frac{1}{7} \\
\frac{2}{7} & \frac{4}{7} & \frac{3}{7} \\
\frac{1}{7} & \frac{2}{7} & \frac{5}{7}
\end{array}\right)
\end{aligned}
$$

Sec 2.6, 2.7:

1. LU Factorization. Complete the following steps to find the LU factorization of the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 1 \\
2 & 4 & 5 \\
0 & 4 & 1
\end{array}\right]
$$

(a) Find the two elimination matrices, E_{21}, E_{32} that will put A into upper-triangular form.

$$
\begin{aligned}
& E_{21}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), E_{32}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right) \\
& E_{32} E_{21} A=\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 2 & 3 \\
0 & 0 & -5
\end{array}\right)=U
\end{aligned}
$$

(b) Find E_{21}^{-1} and E_{32}^{-1} and multiply them in the correct order to find L such that $A=L U$.

$$
L=\left(E_{32} E_{21}\right)^{-1}=E_{21}^{-1} E_{32}^{-1}=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right)=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 2 & 1
\end{array}\right)
$$

(c) Find the diagonal matrix D such that $A=L D U$, where both L and U have ones on their diagonals.

$$
A=L D U=\left(\begin{array}{lll}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & 2 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & -5
\end{array}\right)\left(\begin{array}{ccc}
1 & 1 & 1 \\
0 & 1 & \frac{3}{2} \\
0 & 0 & 1
\end{array}\right)
$$

(d) Check that your factorization works! Multiply your L, D, and U matrices to recover A.
repeat the matrix multiplication.
2. Consider the following matrix:

$$
A=\left[\begin{array}{ccc}
1 & 0 & 2 \\
2 & 1 & 1 \\
0 & -2 & 1
\end{array}\right]
$$

(a) Compute the $L U$-factorization to find matrices L and U such that $A=L U$.

$$
\begin{aligned}
& E_{21}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), E_{32}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 2 & 1
\end{array}\right) \\
& E_{32} E_{21} A=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & -5
\end{array}\right)=U \\
& L=\left(E_{32} E_{21}\right)^{-1}=E_{21}^{-1} E_{32}^{-1}=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & -2 & 1
\end{array}\right) \\
& A=\left(\begin{array}{ccc}
1 & 0 & 0 \\
2 & 1 & 0 \\
0 & -2 & 1
\end{array}\right)\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & 1 & -3 \\
0 & 0 & -5
\end{array}\right)
\end{aligned}
$$

(b) Switch rows 2 and 3 of A to find S. Show that this new matrix S is symmetric.

$$
\begin{aligned}
& S=\left(\begin{array}{ccc}
1 & 0 & 2 \\
0 & -2 & 1 \\
2 & 1 & 1
\end{array}\right) \\
& S^{T}=S \Rightarrow \mathrm{~S} \text { is symmetric }
\end{aligned}
$$

(c) Compute the factorization $S=L D L^{T}$.
$E_{31}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -2 & 0 & 1\end{array}\right), E_{32}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{2} & 1\end{array}\right)$
$E_{32} E_{31} S=\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & -2 & 1 \\ 0 & 0 & -\frac{5}{2}\end{array}\right)=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -\frac{5}{2}\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1\end{array}\right)=D L^{T}$
check $L=\left(E_{32} E_{31}\right)^{-1}=E_{31}^{-1} E_{32}^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -\frac{1}{2} & 1\end{array}\right)$
$S=L D L^{T}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & -\frac{1}{2} & 1\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & -2 & 0 \\ 0 & 0 & -\frac{5}{2}\end{array}\right)\left(\begin{array}{ccc}1 & 0 & 2 \\ 0 & 1 & -\frac{1}{2} \\ 0 & 0 & 1\end{array}\right)$
3. What three matrices E_{21}, E_{12} and D reduce $A=\left[\begin{array}{ll}1 & 2 \\ 2 & 6\end{array}\right]$ to the identity matrix (i.e., $\left.D E_{12} E_{21} A=I\right)$? Multiply these matrices together to find A^{-1}.

$$
\begin{aligned}
& E_{21}=\left(\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right), E_{12}=\left(\begin{array}{cc}
1 & -1 \\
0 & 1
\end{array}\right), D=\left(\begin{array}{ll}
1 & 0 \\
0 & \frac{1}{2}
\end{array}\right) \\
& D E_{12} E_{21} A=I \\
& A^{-1}=D E_{12} E_{21}=\left(\begin{array}{cc}
3 & -1 \\
-1 & \frac{1}{2}
\end{array}\right)
\end{aligned}
$$

4. Solve the system $A \boldsymbol{x}=\boldsymbol{b}$ using the $L U$ factorization of A, where

$$
A=\left[\begin{array}{lll}
2 & 3 & 3 \\
0 & 5 & 7 \\
6 & 8 & 9
\end{array}\right], \quad \boldsymbol{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right], \quad \boldsymbol{b}=\left[\begin{array}{l}
2 \\
2 \\
5
\end{array}\right] .
$$

(a) First factor A into $L U$, and obtain the system $L U \boldsymbol{x}=\boldsymbol{b}$
$E_{31}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1\end{array}\right), E_{32}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{5} & 1\end{array}\right)$
$E_{32} E_{31} A=\left(\begin{array}{ccc}2 & 3 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & \frac{7}{5}\end{array}\right)=U$
$L=\left(E_{32} E_{31}\right)^{-1}=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -\frac{1}{5} & 1\end{array}\right)$
$A=L U=\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -\frac{1}{5} & 1\end{array}\right)\left(\begin{array}{lll}2 & 3 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & \frac{7}{5}\end{array}\right)$
$\left(\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 3 & -\frac{1}{5} & 1\end{array}\right)\left(\begin{array}{lll}2 & 3 & 3 \\ 0 & 5 & 7 \\ 0 & 0 & \frac{7}{5}\end{array}\right)\left(\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right)=\left(\begin{array}{l}2 \\ 2 \\ 5\end{array}\right)$
(b) Use your result in (a) to compute $L \boldsymbol{y}=\boldsymbol{b}$. What is \boldsymbol{y} ?

$$
\begin{aligned}
& \left(\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
3 & -\frac{1}{5} & 1
\end{array}\right)\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{l}
2 \\
2 \\
5
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
2 \\
2 \\
-\frac{3}{5}
\end{array}\right)
\end{aligned}
$$

(c) Use your result in (b) to find \boldsymbol{x}.

$$
\begin{aligned}
& \left(\begin{array}{lll}
2 & 3 & 3 \\
0 & 5 & 7 \\
0 & 0 & \frac{7}{5}
\end{array}\right)\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3}
\end{array}\right)=\left(\begin{array}{c}
2 \\
2 \\
-\frac{3}{5}
\end{array}\right) \\
& \Rightarrow\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\left(\begin{array}{c}
\frac{1}{7} \\
1 \\
-\frac{3}{7}
\end{array}\right)
\end{aligned}
$$

(d) How could you factor A into a product $U L$, upper triangular times lower triangular? Would they be the same factors as in $A=L U$? use elimination matrices to make A into lower triangular matrix and then find U $=(\text { all elimination matrices })^{-1}$. They would probably not be the same factor.

