Sec 2.1, 2.2:

1. Elimination: three equations, three unknowns. Consider the following system of equations

$$
\begin{array}{r}
x+2 y-z=1 \\
2 x-y+z=3 \\
3 x+y-2 z=4 \tag{1c}
\end{array}
$$

(a) Eliminate x.
i. Find the pivot in Eq. (1a) and multipliers from Eqs. (1b) and (1c) that will eliminate the x terms in Eqs. (1b) and (1c).
Pivot: 1
Multiplier from Eq. 1b): $\underline{2}$
Multiplier from Eq. (1c): $\underline{3}$
ii. Perform the elimination of x from the last two equations.

$$
\begin{align*}
& x+2 y-z=1 \tag{1}\\
& -5 y+3 z=1 \\
& -5 y+z=1
\end{align*}
$$

iii. Write the resulting 2D system of equations (with just y and z) in which x is eliminated. Hint: Leave Eq. (1a) out.
$-5 y+3 z=1 \quad\left(2^{\prime}\right)$
$-5 y+z=1$
(b) Eliminate y. From answer to (a)iii, find the pivot and multiplier to eliminate y. Perform the elimination and write the final equation that just contains z.
Pivot=-5

$$
-5 y+3 z=1
$$

$$
-2 z=0
$$

(c) Back substitution. Now, write the original Eq. (1a), the x-eliminated Eq. (1b) (that just contains y and z) and the x, y-eliminated Eq. (1c) (just containing z). You should see a triangular system. Use back substitution to solve the system for z, then y, then x.
$x+2 y-z=1 \quad(1), \quad x=7 / 5$
$-5 y+3 z=1 \quad\left(2^{\prime}\right), \quad y=-1 / 5$
$-2 z=0 \quad\left(3^{\prime \prime}\right), \quad z=0$

$$
\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{c}
7 / 5 \\
-1 / 5 \\
0
\end{array}\right]
$$

2. Use Gauss-Jordan elimination to solve the following system:

$$
\begin{array}{r}
2 x_{1}+4 x_{2}-2 x_{3}=2 \\
4 x_{1}+9 x_{2}-3 x_{3}=8 \\
-2 x_{1}-3 x_{2}+7 x_{3}=4 \tag{2c}
\end{array}
$$

$$
\begin{array}{ll}
2 x_{1}+4 x_{2}-2 x_{3}=2 & (1) \\
x_{2}+x_{3}=4 & (2)-2 \cdot(1)=\left(2^{\prime}\right) \\
x_{2}+5 x_{3}=6 & (3)+(1)=\left(3^{\prime}\right) \\
& \\
2 x_{1}+4 x_{2}-2 x_{3}=2 & (1) \\
x_{2}+x_{3}=4 & (2)-2 \cdot(1)=\left(2^{\prime}\right) \tag{1}\\
4 x_{3}=2 & \left(3^{\prime}\right)-\left(2^{\prime}\right)=\left(3^{\prime \prime}\right)
\end{array}
$$

From back substitution, we see that:

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-11 / 2 \\
7 / 2 \\
1 / 2
\end{array}\right]
$$

3. Are the vectors $\boldsymbol{u}=\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right], \boldsymbol{v}=\left[\begin{array}{r}1 \\ 3 \\ -1\end{array}\right]$, and $\boldsymbol{w}=\left[\begin{array}{r}1 \\ -1 \\ 1\end{array}\right]$ linearly independent? Hint: Solve $c_{1} \boldsymbol{u}+c_{2} \boldsymbol{v}+c_{3} \boldsymbol{w}=\mathbf{0}$.
$c_{1}\left[\begin{array}{l}1 \\ 3 \\ 1\end{array}\right]+c_{2}\left[\begin{array}{c}1 \\ 3 \\ -1\end{array}\right]+c_{3}\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$
$c_{1}+c_{2}+c_{3}=0$
$3 c_{1}+3 c_{2}-c_{3}=0$
$c_{1}-c_{2}+c_{3}=0$
$c_{1}+c_{2}+c_{3}=0$
$-4 c_{3}=0$
(2) $-3(1) \Longrightarrow c_{3}=0$
$-2 c_{2}=0$
$(3)-(1) \Longrightarrow c_{2}=0$

The only solution is $c_{1}=c_{2}=c_{3}=0$, which implies $\mathbf{u}, \mathbf{v}, \mathbf{w}$ are linearly independent.
4. Use elimination to solve

$$
\begin{align*}
x_{1}+x_{2}+x_{3} & =6 \tag{1}\\
x_{1}+2 x_{2}+2 x_{3} & =11 \tag{2}\\
2 x_{1}+3 x_{2}-4 x_{3} & =3 \tag{3}
\end{align*}
$$

$$
\begin{array}{ll}
x_{1}+x_{2}+x_{3}=6 & (1) \\
x_{2}+x_{3}=5 & (2)-(1)=\left(2^{\prime}\right) \\
x_{2}-6 x_{3}=-9 & (3)-2(1)=\left(3^{\prime}\right) \\
& \\
x_{1}+x_{2}+x_{3}=6 & (1) \\
x_{2}+x_{3}=5 & \left(2^{\prime}\right) \\
-7 x_{3}=-14 & \left(3^{\prime}\right)-\left(2^{\prime}\right)=\left(3^{\prime \prime}\right)
\end{array}
$$

From back substitution we have: $\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 2\end{array}\right]$

Sec 2.3, 2.4:

1. Write down the 3×3 matrices that produce these steps:
(a) Subtracts 5 times row 1 from row 2.

$$
\left[\begin{array}{ccc}
1 & 0 & 0 \\
-5 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

(b) Adds 7 times row 2 to row 3 .

$$
\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 7 & 1
\end{array}\right]
$$

(c) Exchanges rows 1 and 2, then rows 2 and 3 .

$$
\left[\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right]
$$

(d) Subtracts row 1 from row 2, and then exchanges rows 2 and 3 .
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0\end{array}\right]$
(e) Exchanges rows 2 and 3, and then subtracts row 1 from row 3 .
$\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 0 & 1 \\ -1 & 1 & 0\end{array}\right]$
2. Elimination matrices: Consider the following system of equations:

$$
\begin{array}{r}
x+2 y-z=1 \\
2 x-y+z=3 \\
3 x+y-2 z=4
\end{array}
$$

We are going to go through the process of solving a linear system using elimination matrices.
(a) Write the system of equations as a matrix vector system: $A \boldsymbol{x}=\boldsymbol{b}$.

$$
\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & -1 & 1 \\
3 & 1 & -2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right]
$$

row 1 column 1 in the matrix to the left is the pivot.
(b) Identify the pivot in the first column (circle it in your matrix A). Write the two elimination matrices E_{21} and E_{31} that, when applied to A, will give zeros in the necessary positions.

$$
\begin{aligned}
& E_{21}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& E_{31}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]
\end{aligned}
$$

(c) Perform the multiplication $E_{31} E_{21} A$. Do you see zeros below the pivot?

$$
E_{31} E_{21} A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & -1 \\
2 & -1 & 1 \\
3 & 1 & -2
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -5 & 3 \\
0 & -5 & 1
\end{array}\right]
$$

Row 2 column 2 is the new pivot.
(d) Now move on to the second column. Identify the new pivot and circle it in your new matrix from Part (c) [it might be useful to re-write that matrix here]. Hint: recall that we are looking to write the system as an upper-triangular system. Therefore, we are looking to get a zero under all of the diagonal entries of A. Please see above.
(e) Write the elimination matrix E_{32} that, when applied to the matrix from Part (c), will give a zero in the necessary position. Multiply this elimination matrix with your matrix from Part (c). Do you see an upper-triangular matrix?

$$
\begin{aligned}
& E_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right] \\
& E_{32} E_{31} E_{21} A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -5 & 3 \\
0 & -5 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 2 & -1 \\
0 & -5 & 3 \\
0 & 0 & -2
\end{array}\right]
\end{aligned}
$$

(f) Multiply out the three elimination matrices from Parts (c) and (e): $E=E_{32} E_{31} E_{21}$. Using matrix multiplication, we see that:

$$
\begin{aligned}
& E=E_{32} E_{31} E_{21} \\
& E=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-3 & 0 & 1
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-2 & 1 & 0 \\
-1 & -1 & 1
\end{array}\right]
\end{aligned}
$$

(g) Now that you have one matrix, E, that describes all elimination operations performed on A, we can solve the system by applying this matrix to both sides of the equation: $E A \boldsymbol{x}=E \boldsymbol{b}$. Write out this new matrix-vector system.

$$
E A \boldsymbol{x}=E \boldsymbol{b}
$$

$\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & -1 & 1\end{array}\right]\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & -1 & 1 \\ 3 & 1 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{ccc}1 & 0 & 0 \\ -2 & 1 & 0 \\ -1 & 1 & 1\end{array}\right]\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]$
$\left[\begin{array}{ccc}1 & 2 & -1 \\ 0 & -5 & 3 \\ 0 & 0 & -2\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}1 \\ 1 \\ 0\end{array}\right]$
(h) Find the solution \boldsymbol{x} by performing back substitution on the system from Part (g). Hint: Convert back to a system of equations.

$$
\begin{aligned}
& x_{1}+2 x_{2}-x_{3}=1 \Longrightarrow x_{1}=7 / 5 \\
& -5 x_{2}+3 x_{3}=1 \Longrightarrow x_{2}=-1 / 5 \\
& -2 x_{3}=1 \Longrightarrow x_{3}=0
\end{aligned}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
7 / 5 \\
-1 / 5 \\
0
\end{array}\right]
$$

(i) Check your answer by substituting the answer back into the original system in Part (a).
$\left[\begin{array}{ccc}1 & 2 & -1 \\ 2 & -1 & 1 \\ 3 & 1 & -2\end{array}\right]\left[\begin{array}{c}7 / 5 \\ -1 / 5 \\ 0\end{array}\right]=\left[\begin{array}{c}7 / 5-2 / 5 \\ 14 / 5+1 / 5 \\ 21 / 5-1 / 5\end{array}\right]=\left[\begin{array}{l}1 \\ 3 \\ 4\end{array}\right]=\boldsymbol{b}$
3. Which three elimination matrices put A into triangular form U ?

$$
A=\left[\begin{array}{rrr}
1 & 1 & 0 \\
4 & 6 & 1 \\
-2 & 2 & 0
\end{array}\right]
$$

$$
\begin{aligned}
& E_{21}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-4 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
& E_{31}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
2 & 0 & 1
\end{array}\right] \\
& E_{32}=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -2 & 1
\end{array}\right]
\end{aligned}
$$

4. Which elimination matrices put A into triangular form U ?

$$
\begin{aligned}
& A=\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \\
& E_{21}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
1 / 2 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& E_{21} A=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \\
& E_{32}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 2 / 3 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right] \\
& E_{32} E_{21} A=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] \\
& E_{43}=\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 3 / 4 & 1
\end{array}\right] \\
& E_{43} E_{32} E_{21} A=\left[\begin{array}{cccc}
2 & -1 & 0 & 0 \\
0 & 3 / 2 & -1 & 0 \\
0 & 0 & 4 / 3 & -1 \\
0 & 0 & 0 & 5 / 4
\end{array}\right]
\end{aligned}
$$

