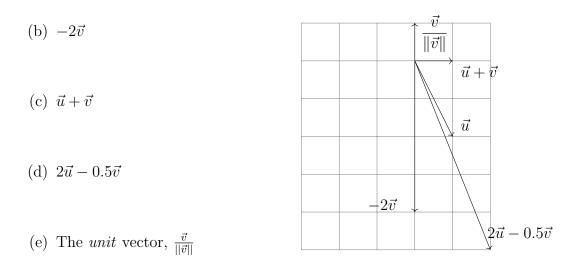
Sec 1.1, 1.2:

1. Consider the following two vectors:

$$\vec{u} = \begin{bmatrix} 1\\ -2 \end{bmatrix}$$
 and $\vec{v} = \begin{bmatrix} 0\\ 2 \end{bmatrix}$

Draw and label the following vectors on the axis provided:

(a) \vec{u}



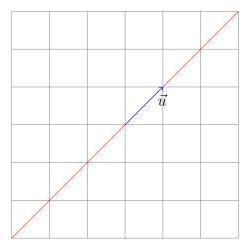
What are the lengths of \vec{u} and \vec{v} ? $\|\vec{u}\| = \sqrt{1 + (-2)^2} = \sqrt{5}$, $\|\vec{v}\| = \sqrt{2^2} = 2$

2. True or False? _____ Any list of 7 real numbers is a vector in \mathbb{R}^7 .

True

3. Linear Combinations:

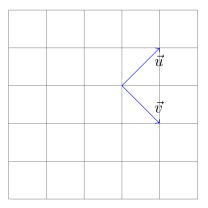
(a) Let \vec{u} be the vector $\begin{bmatrix} 1\\1 \end{bmatrix}$ in \mathbb{R}^2 . What does the set of all possible combinations, $c\vec{u}, c \in \mathbb{R}$ look like? This is called the **span** of \vec{u} , or span $\{\vec{u}\}$. *Hint:* Try some values for c such as c = 2, c = -4, etc.



Span is indicated in red.

(b) Let \vec{v} be another vector $\begin{bmatrix} 1\\ -1 \end{bmatrix}$ in \mathbb{R}^2 . What does the set of all combinations, $c_1\vec{u} + c_2\vec{v}$, where $c_1, c_2 \in \mathbb{R}$, look like? This is the span $\{\vec{u}, \vec{v}\}$.

Hint: Try $c_1 = 0$ and $c_2 = 0$ first, then some combinations of the two.



 \vec{u} and \vec{v} are not parallel, and thus span all of \mathbb{R}^2 .

(c) What about if $\vec{v} = \begin{vmatrix} -1 \\ -1 \end{vmatrix}$? What does the set of all combinations, $c_1 \vec{u} + c_2 \vec{v}$, where $c_1, c_2 \in \mathbb{R}$, look like?

 \vec{u} and \vec{v} are parallel, so in this case the span is a line in \mathbb{R}^2 .

(d) Let $\vec{u}, \vec{v}, \vec{w}$ be arbitrary vectors in \mathbb{R}^3 . What does the set of all combinations, $c_1\vec{u} + c_2\vec{v} + c_3\vec{w}$, where $c_1, c_2, c_3 \in \mathbb{R}$, look like? This is the span $\{\vec{u}, \vec{v}, \vec{w}\}$.

all parallel: a line in \mathbb{R}^3 2 vectors parallel: a plane in in \mathbb{R}^3 none parallel (and all three vectors not in the same plane): all of \mathbb{R}^3

4. Given the set of vectors:

$$\vec{u} = \begin{bmatrix} 1\\3\\4 \end{bmatrix}, \qquad \vec{v} = \begin{bmatrix} 0\\1\\2 \end{bmatrix}$$

Compute the following:

(a) The unit vector in the direction of \vec{u} .

$$\|\vec{u}\| = \sqrt{1^2 + 3^2 + 4^2} = \sqrt{26} \ , \ \frac{\vec{u}}{\|\vec{u}\|} = \begin{bmatrix} \frac{1}{\sqrt{26}} \\ \frac{3}{\sqrt{26}} \\ \frac{4}{\sqrt{26}} \end{bmatrix}$$

(b) The unit vector in the direction of \vec{v} .

$$\|\vec{v}\| = \sqrt{0^2 + 1^2 + 2^2} = \sqrt{5} \ , \ \frac{\vec{v}}{\|\vec{v}\|} = \begin{bmatrix} 0\\ \frac{1}{\sqrt{5}}\\ \frac{2}{\sqrt{5}} \end{bmatrix}$$

(c) The dot product, $\vec{u} \cdot \vec{v}$.

$$\vec{u} \cdot \vec{v} = 1(0) + 3(1) + 4(2) = 11$$

(d) The cosine of the angle between \vec{u} and \vec{v} .

$$\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|} = \frac{11}{\sqrt{26}\sqrt{5}} = \frac{11}{\sqrt{130}}$$

- 5. Cosine Formula:
 - (a) What does the set of all unit vectors in \mathbb{R}^2 look like?

A filled circle of radius 1.

(b) Consider the unit vector $\vec{U} = \begin{bmatrix} \cos \alpha \\ \sin \alpha \end{bmatrix}$ and the vector along the *x*-axis, $\vec{i} = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$. What is $\vec{U} \cdot \vec{i}$?

 $\vec{U} \cdot \vec{i} = \cos \alpha$

(c) Now instead consider a generic unit vector $\vec{u} = \begin{bmatrix} \cos \beta \\ \sin \beta \end{bmatrix}$. What is $\vec{u} \cdot \vec{U}$? Consider the identity $\cos(\alpha - \beta) = \cos \alpha \cos \beta + \sin \alpha \sin \beta$, let $\theta = \alpha - \beta$, and simplify your answer.

 $\vec{u} \cdot \vec{U} = \cos \alpha \cos \beta + \sin \alpha \sin \beta = \cos (\alpha - \beta) = \cos \theta$

(d) Suppose we have two vectors, u and v that are not unit vectors. Make these vectors unit by dividing by their lengths. Then, apply the formula in (c) to verify the Cosine formula: $\cos \theta = \frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\| \|\vec{v}\|}$. What is θ here and how does it relate to the α and β in (c)? *Hint*: It might be useful to draw out the vectors.

$$\begin{aligned} \|\vec{u}\| &= \sqrt{(\cos\beta)^2 + (\sin\beta)^2} , \ \|\vec{U}\| &= \sqrt{(\cos\alpha)^2 + (\sin\alpha)^2} \\ \|\vec{u}\| \|\vec{U}\| &= \sqrt{(\cos\beta)^2 + (\sin\beta)^2} \sqrt{(\cos\alpha)^2 + (\sin\alpha)^2} = (1)(1) = 1 \\ \vec{u} \cdot \vec{U} &= \cos\theta \\ \frac{\vec{u} \cdot \vec{U}}{\|\vec{u}\| \|\vec{U}\|} &= \frac{\cos\theta}{1} = \cos\theta \end{aligned}$$

Sec 1.3:

1. Consider the following vectors and matrices

$$\vec{v} = \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \qquad \vec{u} = \begin{bmatrix} 4\\-1 \end{bmatrix}, \qquad A = \begin{bmatrix} 1 & 2\\3 & 0 \end{bmatrix}, \qquad B = \begin{bmatrix} 1 & 2 & 3\\3 & 1 & 0 \end{bmatrix}$$

Compute the following vector-matrix products.

(a) $A\vec{u}$

 $A\vec{u} = \begin{bmatrix} 1 & 2 \\ 3 & 0 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \end{bmatrix} = 4 \begin{bmatrix} 1 \\ 3 \end{bmatrix} + (-1) \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 2 \\ 12 \end{bmatrix}$

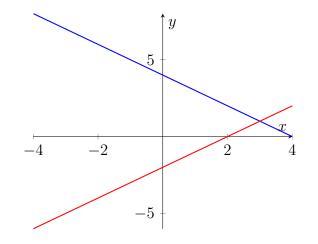
(b) $B\vec{v}$

$$B\vec{v} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \\ -1 \end{bmatrix} = \begin{bmatrix} (1,2,3) \cdot (1,2,-1) \\ (3,1,0) \cdot (1,2,-1) \end{bmatrix} = \begin{bmatrix} 1+4-3 \\ 3+2 \end{bmatrix} = \begin{bmatrix} 2 \\ 5 \end{bmatrix}$$

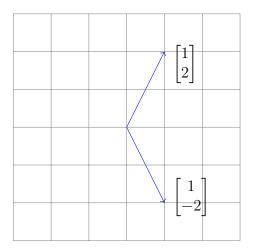
2. Consider the system of equations:

$$x + y = 4$$
 (1a)
 $2x - 2y = 4.$ (1b)

(a) Draw the row picture (two intersecting lines).



(b) Draw the column picture (combination of two columns equal to the column vector (4,4) on the right side).



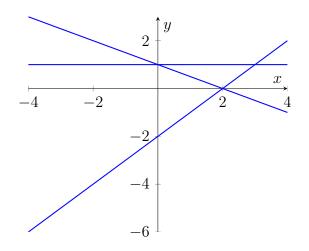
$$\begin{bmatrix} x+y\\2x-2y \end{bmatrix} = \begin{bmatrix} 4\\4 \end{bmatrix}, \begin{bmatrix} 1&1\\2&-2 \end{bmatrix} \begin{bmatrix} x\\y \end{bmatrix} = \begin{bmatrix} 4\\4 \end{bmatrix}, x\begin{bmatrix} 1\\2 \end{bmatrix} + y\begin{bmatrix} 1\\-2 \end{bmatrix} = \begin{bmatrix} 4\\4 \end{bmatrix}$$

3. Sketch these three lines and decide if the equations are solvable:

$$x + 2y = 2 \tag{2a}$$

$$x - y = 2. \tag{2b}$$

$$y = 1. \tag{2c}$$



 $x-1=2 \Rightarrow x=3 \Rightarrow x+2y=3+2=5$, but in the given equations above x+2y=2. This is a contradiction, so no solution exists. Graphically, we can see that there is no point of intersection between all three lines.

4. Find A^{-1} by rewriting the following matrix-vector system

$$A\vec{x} = \vec{b} \implies \begin{bmatrix} 0 & 1 & 2 \\ 1 & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \vec{x} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}$$
$$\stackrel{1}{=} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \begin{bmatrix} x_2 + 2x_3 \\ x_1 - x_2 \\ x_3 \end{bmatrix}$$

Then:

 $\begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix}$

$$\begin{aligned} x_3 &= b_3 \\ x_2 &= b_1 - 2b_3 \\ x_1 &= b_2 + b_1 - 2b_3 \\ \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 + b_2 - 2b_3 \\ b_1 - 2b_3 \\ b_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} \begin{bmatrix} 1 & 1 & -2 \\ 1 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \\ \Rightarrow A^{-1} &= \begin{bmatrix} 1 & 1 & -2 \\ 1 & 0 & -2 \\ 0 & 0 & 1 \end{bmatrix} \end{aligned}$$

5. Write the following system of equations as a matrix-vector system. Hint: Write $\vec{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$ so that $A\vec{x} = \vec{b}$. 2x + 2y = 9-y + z = 1x + 6z = 0

 $\begin{bmatrix} 2 & 2 & 0 \\ 0 & -1 & 1 \\ 1 & 0 & 6 \end{bmatrix} \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 9 \\ 1 \\ 0 \end{bmatrix}$

6. Write the following matrix-vector system as a system of linear equations

ſ	1	5	2]	x_1]	$\left\lceil -2 \right\rceil$
	3	0	-1	x_2	=	7
	8	2	0	x_3		9

$$\begin{bmatrix} 1 & 5 & 2 \\ 3 & 0 & -1 \\ 8 & 2 & 0 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 + 5x_2 + 2x_3 \\ x_1 - x_3 \\ 8x_1 + 2x_2 \end{bmatrix} = \begin{bmatrix} -2 \\ 7 \\ 9 \end{bmatrix}$$
$$x + 5y + 2z = -2$$
$$x - z = 7$$
$$8x + 2y = 9$$