Sec 1.1, 1.2:

1. Consider the following two vectors:

$$
\vec{u}=\left[\begin{array}{c}
1 \\
-2
\end{array}\right] \text { and } \vec{v}=\left[\begin{array}{l}
0 \\
2
\end{array}\right]
$$

Draw and label the following vectors on the axis provided:
(a) \vec{u}
(b) $-2 \vec{v}$
(c) $\vec{u}+\vec{v}$
(d) $2 \vec{u}-0.5 \vec{v}$
(e) The unit vector, $\frac{\vec{v}}{\|\vec{v}\|}$

What are the lengths of \vec{u} and \vec{v} ?
$\|\vec{u}\|=\sqrt{1+(-2)^{2}}=\sqrt{5},\|\vec{v}\|=\sqrt{2^{2}}=2$
2. True or False? \qquad Any list of 7 real numbers is a vector in \mathbb{R}^{7}.

True

3. Linear Combinations:

(a) Let \vec{u} be the vector $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ in \mathbb{R}^{2}. What does the set of all possible combinations, $c \vec{u}, c \in \mathbb{R}$ look like? This is called the span of \vec{u}, or $\operatorname{span}\{\vec{u}\}$.
Hint: Try some values for c such as $c=2, c=-4$, etc.

Span is indicated in red.
(b) Let \vec{v} be another vector $\left[\begin{array}{c}1 \\ -1\end{array}\right]$ in \mathbb{R}^{2}. What does the set of all combinations, $c_{1} \vec{u}+c_{2} \vec{v}$, where $c_{1}, c_{2} \in \mathbb{R}$, look like? This is the $\operatorname{span}\{\vec{u}, \vec{v}\}$.
Hint: Try $c_{1}=0$ and $c_{2}=0$ first, then some combinations of the two.

\vec{u} and \vec{v} are not parallel, and thus span all of \mathbb{R}^{2}.
(c) What about if $\vec{v}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$? What does the set of all combinations, $c_{1} \vec{u}+c_{2} \vec{v}$, where $c_{1}, c_{2} \in \mathbb{R}$, look like?
\vec{u} and \vec{v} are parallel, so in this case the span is a line in \mathbb{R}^{2}.
(d) Let $\vec{u}, \vec{v}, \vec{w}$ be arbitrary vectors in \mathbb{R}^{3}. What does the set of all combinations, $c_{1} \vec{u}+c_{2} \vec{v}+c_{3} \vec{w}$, where $c_{1}, c_{2}, c_{3} \in \mathbb{R}$, look like? This is the $\operatorname{span}\{\vec{u}, \vec{v}, \vec{w}\}$.
all parallel: a line in \mathbb{R}^{3}
2 vectors parallel: a plane in in \mathbb{R}^{3}
none parallel (and all three vectors not in the same plane): all of \mathbb{R}^{3}
4. Given the set of vectors:

$$
\vec{u}=\left[\begin{array}{l}
1 \\
3 \\
4
\end{array}\right], \quad \vec{v}=\left[\begin{array}{l}
0 \\
1 \\
2
\end{array}\right]
$$

Compute the following:
(a) The unit vector in the direction of \vec{u}.

$$
\|\vec{u}\|=\sqrt{1^{2}+3^{2}+4^{2}}=\sqrt{26}, \frac{\vec{u}}{\|\vec{u}\|}=\left[\begin{array}{c}
\frac{1}{\sqrt{26}} \\
\frac{3}{\sqrt{26}} \\
\frac{4}{\sqrt{26}}
\end{array}\right]
$$

(b) The unit vector in the direction of \vec{v}.

$$
\|\vec{v}\|=\sqrt{0^{2}+1^{2}+2^{2}}=\sqrt{5}, \frac{\vec{v}}{\|\vec{v}\|}=\left[\begin{array}{c}
0 \\
\frac{1}{\sqrt{5}} \\
\frac{2}{\sqrt{5}}
\end{array}\right]
$$

(c) The dot product, $\vec{u} \cdot \vec{v}$.

$$
\vec{u} \cdot \vec{v}=1(0)+3(1)+4(2)=11
$$

(d) The cosine of the angle between \vec{u} and \vec{v}.

$$
\cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}=\frac{11}{\sqrt{26} \sqrt{5}}=\frac{11}{\sqrt{130}}
$$

5. Cosine Formula:
(a) What does the set of all unit vectors in \mathbb{R}^{2} look like?

A filled circle of radius 1.
(b) Consider the unit vector $\vec{U}=\left[\begin{array}{c}\cos \alpha \\ \sin \alpha\end{array}\right]$ and the vector along the x-axis, $\vec{i}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$. What is $\vec{U} \cdot \vec{i}$?

$$
\vec{U} \cdot \vec{i}=\cos \alpha
$$

(c) Now instead consider a generic unit vector $\vec{u}=\left[\begin{array}{c}\cos \beta \\ \sin \beta\end{array}\right]$. What is $\vec{u} \cdot \vec{U}$? Consider the identity $\cos (\alpha-\beta)=\cos \alpha \cos \beta+\sin \alpha \sin \beta$, let $\theta=\alpha-\beta$, and simplify your answer.
$\vec{u} \cdot \vec{U}=\cos \alpha \cos \beta+\sin \alpha \sin \beta=\cos (\alpha-\beta)=\cos \theta$
(d) Suppose we have two vectors, u and v that are not unit vectors. Make these vectors unit by dividing by their lengths. Then, apply the formula in (c) to verify the Cosine formula: $\cos \theta=\frac{\vec{u} \cdot \vec{v}}{\|\vec{u}\|\|\vec{v}\|}$. What is θ here and how does it relate to the α and β in (c)? Hint: It might be useful to draw out the vectors.
$\|\vec{u}\|=\sqrt{(\cos \beta)^{2}+(\sin \beta)^{2}},\|\vec{U}\|=\sqrt{(\cos \alpha)^{2}+(\sin \alpha)^{2}}$
$\|\vec{u}\|\|\vec{U}\|=\sqrt{(\cos \beta)^{2}+(\sin \beta)^{2}} \sqrt{(\cos \alpha)^{2}+(\sin \alpha)^{2}}=(1)(1)=1$
$\vec{u} \cdot \vec{U}=\cos \theta$
$\frac{\vec{u} \cdot \vec{U}}{\|\vec{u}\|\|\vec{U}\|}=\frac{\cos \theta}{1}=\cos \theta$

Sec 1.3:

1. Consider the following vectors and matrices

$$
\vec{v}=\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right], \quad \vec{u}=\left[\begin{array}{c}
4 \\
-1
\end{array}\right], \quad A=\left[\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right], \quad B=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 0
\end{array}\right]
$$

Compute the following vector-matrix products.
(a) $A \vec{u}$

$$
A \vec{u}=\left[\begin{array}{ll}
1 & 2 \\
3 & 0
\end{array}\right]\left[\begin{array}{c}
4 \\
-1
\end{array}\right]=4\left[\begin{array}{l}
1 \\
3
\end{array}\right]+(-1)\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{c}
2 \\
12
\end{array}\right]
$$

(b) $B \vec{v}$

$$
B \vec{v}=\left[\begin{array}{lll}
1 & 2 & 3 \\
3 & 1 & 0
\end{array}\right]\left[\begin{array}{c}
1 \\
2 \\
-1
\end{array}\right]=\left[\begin{array}{c}
(1,2,3) \cdot(1,2,-1) \\
(3,1,0) \cdot(1,2,-1)
\end{array}\right]=\left[\begin{array}{c}
1+4-3 \\
3+2
\end{array}\right]=\left[\begin{array}{l}
2 \\
5
\end{array}\right]
$$

2. Consider the system of equations:

$$
\begin{array}{r}
x+y=4 \\
2 x-2 y=4 . \tag{1b}
\end{array}
$$

(a) Draw the row picture (two intersecting lines).

(b) Draw the column picture (combination of two columns equal to the column vector $(4,4)$ on the right side).

$$
\left[\begin{array}{c}
x+y \\
2 x-2 y
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right],\left[\begin{array}{cc}
1 & 1 \\
2 & -2
\end{array}\right]\left[\begin{array}{l}
x \\
y
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right], x\left[\begin{array}{l}
1 \\
2
\end{array}\right]+y\left[\begin{array}{c}
1 \\
-2
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right]
$$

3. Sketch these three lines and decide if the equations are solvable:

$$
\begin{align*}
x+2 y & =2 \tag{2a}\\
x-y & =2 . \tag{2b}\\
y & =1 . \tag{2c}
\end{align*}
$$

$x-1=2 \Rightarrow x=3 \Rightarrow x+2 y=3+2=5$, but in the given equations above $x+2 y=2$. This is a contradiction, so no solution exists. Graphically, we can see that there is no point of intersection between all three lines.
4. Find A^{-1} by rewriting the following matrix-vector system

$$
A \vec{x}=\vec{b} \quad \Longrightarrow \quad\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right] \vec{x}=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]
$$

$$
\left[\begin{array}{ccc}
0 & 1 & 2 \\
1 & -1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{2}+2 x_{3} \\
x_{1}-x_{2} \\
x_{3}
\end{array}\right]
$$

Then:

$$
\begin{aligned}
& x_{3}=b_{3} \\
& x_{2}=b_{1}-2 b_{3} \\
& x_{1}=b_{2}+b_{1}-2 b_{3}
\end{aligned}
$$

$$
\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
b_{1}+b_{2}-2 b_{3} \\
b_{1}-2 b_{3} \\
b_{3}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right]\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & 0 & -2 \\
0 & 0 & 1
\end{array}\right]
$$

$$
\Rightarrow A^{-1}=\left[\begin{array}{ccc}
1 & 1 & -2 \\
1 & 0 & -2 \\
0 & 0 & 1
\end{array}\right]
$$

5. Write the following system of equations as a matrix-vector system. Hint: Write $\vec{x}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$ so that $A \vec{x}=\vec{b}$.

$$
\begin{array}{r}
2 x+2 y=9 \\
-y+z=1 \\
x+6 z=0
\end{array}
$$

$$
\left[\begin{array}{ccc}
2 & 2 & 0 \\
0 & -1 & 1 \\
1 & 0 & 6
\end{array}\right]\left[\begin{array}{l}
x \\
y \\
z
\end{array}\right]=\left[\begin{array}{l}
9 \\
1 \\
0
\end{array}\right]
$$

6. Write the following matrix-vector system as a system of linear equations

$$
\begin{aligned}
& {\left[\begin{array}{ccc}
1 & 5 & 2 \\
3 & 0 & -1 \\
8 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
7 \\
9
\end{array}\right]} \\
& {\left[\begin{array}{ccc}
1 & 5 & 2 \\
3 & 0 & -1 \\
8 & 2 & 0
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{c}
x_{1}+5 x_{2}+2 x_{3} \\
x_{1}-x_{3} \\
8 x_{1}+2 x_{2}
\end{array}\right]=\left[\begin{array}{c}
-2 \\
7 \\
9
\end{array}\right]} \\
& x+5 y+2 z=-2 \\
& x-z=7 \\
& 8 x+2 y=9
\end{aligned}
$$

