Sec 8.1, 8.2:

1. Let $p(x) \in \mathbb{P}_{3}$, and consider the subset S of \mathbb{P}_{3} with $\int_{0}^{1} p(x) d x=0$. Verify that S is a subspace of \mathbb{P}_{3}, and find its basis, β_{S}.
Solution: (1) Note that the polynomial $p_{0}(x) \equiv 0$ satisfies

$$
\int_{0}^{1} p_{0}(x) d x=0
$$

Therefore $p_{0}(x) \in S$.
(2) If $p(x), q(x) \in S$, then

$$
\int_{0}^{1}(p(x)+q(x)) d x=\int_{0}^{1} p(x) d x+\int_{0}^{1} q(x) d x=0 .
$$

Therefore $p(x)+q(x) \in S$.
(3) If $c \in \mathbb{R}$ and $p(x) \in S$, then

$$
\int_{0}^{1} c p(x) d x=c \int_{0}^{1} p(x) d x=0 .
$$

Therefore $c p(x) \in S .(1),(2)$ and (3) conclude that S is a subspace of \mathbb{P}_{3}.
To show a basis of S, note that

$$
\int_{0}^{1} x d x=\frac{1}{2}, \int_{0}^{1} x^{2} d x=\frac{1}{3}, \int_{0}^{1} x^{3} d x=\frac{1}{4}
$$

Then

$$
\int_{0}^{1}\left(x-\frac{1}{2}\right) d x=0, \int_{0}^{1}\left(x^{2}-\frac{1}{3}\right) d x=0, \int_{0}^{1}\left(x^{3}-\frac{1}{4}\right) d x=0
$$

Since $x-\frac{1}{2}, x^{2}-\frac{1}{3}$ and $x^{3}-\frac{1}{4}$ are linearly independent in \mathbb{P}_{3}, then these polynomials are linearly independent in S. To show that they form a base, let $p(x)=a_{0}+a_{1} x+$ $a_{2} x^{2}+a_{3} x^{3} \in S$. Since

$$
0=\int_{0}^{1} p(x) d x=\int_{0}^{1} a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3} d x=a_{0}+\frac{a_{1}}{2}+\frac{a_{2}}{3}+\frac{a_{3}}{4}
$$

This implies

$$
a_{0}=-\frac{a_{1}}{2}-\frac{a_{2}}{3}-\frac{a_{3}}{4} .
$$

Therefore

$$
p(x)=a_{1}\left(x-\frac{1}{2}\right)+a_{2}\left(x^{2}-\frac{1}{3}\right)+a_{3}\left(x^{3}-\frac{1}{4}\right)
$$

Thus, the polynomials $x-\frac{1}{2}, x^{2}-\frac{1}{3}$ and $x^{3}-\frac{1}{4}$ generate S. The basis is

$$
\left\{x-\frac{1}{2}, x^{2}-\frac{1}{3}, x^{3}-\frac{1}{4}\right\} .
$$

2. Prove that T^{2} is a linear transformation if T is a linear transformation.

Solution: Let V be the vector space on \mathbb{R}. For a fixed $\boldsymbol{u}, \boldsymbol{v} \in V$ and $c \in \mathbb{R}$,

$$
T^{2}(\boldsymbol{u}+\boldsymbol{v})=T(T(\boldsymbol{u}+\boldsymbol{v}))=T(T(\boldsymbol{u})+T(\boldsymbol{v}))=T(T(\boldsymbol{u}))+T(T(\boldsymbol{v}))=T^{2}(\boldsymbol{u})+T^{2}(\boldsymbol{v})
$$

and

$$
T^{2}(c \boldsymbol{u})=T(T(c \boldsymbol{u}))=T(c T(\boldsymbol{u}))=c T(T(\boldsymbol{u}))=c T^{2}(\boldsymbol{u})
$$

Therefore, T^{2} is a linear transformation.
3. Which of the following transformations is not linear? Justify your answer. The input vector is $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$.
(a) $T(\boldsymbol{v})=\left(v_{2}, v_{1}\right)$.

Solution: T is linear. For $\boldsymbol{u}=\left(u_{1}, u_{2}\right), \boldsymbol{v}=\left(v_{1}, v_{2}\right)$ and $c \in \mathbb{R}$,

$$
\begin{aligned}
T(\boldsymbol{u}+\boldsymbol{v}) & =T\left(u_{1}+v_{1}, u_{2}+v_{2}\right)=\left(u_{2}+v_{2}, u_{1}+v_{1}\right)=\left(u_{2}, u_{1}\right)+\left(v_{2}, v_{1}\right)=T(\boldsymbol{u})+T(\boldsymbol{v}), \\
T(c \boldsymbol{u}) & =\left(c u_{2}, c u_{1}\right)=c\left(u_{2}, u_{1}\right)=c T(\boldsymbol{u}) .
\end{aligned}
$$

(b) $T(\boldsymbol{v})=\left(0, v_{1}\right)$.

Solution: T is linear. For $\boldsymbol{u}=\left(u_{1}, u_{2}\right), \boldsymbol{v}=\left(v_{1}, v_{2}\right)$ and $c \in \mathbb{R}$,

$$
\begin{aligned}
T(\boldsymbol{u}+\boldsymbol{v}) & =\left(0, u_{1}+v_{1}\right)=\left(0, u_{1}\right)+\left(0, v_{1}\right)=T(\boldsymbol{u})+T(\boldsymbol{v}) \\
T(c \boldsymbol{u}) & =(0, c u)=c(0, u)=c T(\boldsymbol{u}) .
\end{aligned}
$$

(c) $T(\boldsymbol{v})=\left(v_{1}, v_{1}\right)$.

Solution: T is linear. For $\boldsymbol{u}=\left(u_{1}, u_{2}\right)$ and $\boldsymbol{v}=\left(v_{1}, v_{2}\right)$ and $c \in \mathbb{R}$,

$$
\begin{aligned}
T(\boldsymbol{u}+\boldsymbol{v}) & =T\left[\left(u_{1}+v_{1}, u_{2}+v_{2}\right)\right]=\left(u_{1}+v_{1}, u_{1}+v_{1}\right)=\left(u_{1}, u_{1}\right)+\left(v_{1}, v_{1}\right)=T(\boldsymbol{u})+T(\boldsymbol{v}) \\
T(c \boldsymbol{u}) & =\left(c u_{1}, c u_{1}\right)=c\left(u_{1}, u_{1}\right)=c T(\boldsymbol{u})
\end{aligned}
$$

(d) $T(\boldsymbol{v})=(0,1)$.

Solution: T is NOT linear. Choose $c=2$ and $\boldsymbol{u}=(1,1)$.

$$
T(2 \boldsymbol{u})=(0,1) \neq(0,2)=2 T(\boldsymbol{u})
$$

4. Prove whether the following transformations are linear or not.
(a) $T(\boldsymbol{v})=\frac{\boldsymbol{v}}{\|\boldsymbol{v}\|}$.

Solution: T is NOT linear. Choose $c=2$ and any $v \neq 0$.

$$
T(2 \boldsymbol{v})=\frac{2 \boldsymbol{v}}{\|2 \boldsymbol{v}\|}=\frac{2 \boldsymbol{v}}{2\|\boldsymbol{v}\|}=\frac{\boldsymbol{v}}{\|\boldsymbol{v}\|}=T(\boldsymbol{v}) \neq 2 T(\boldsymbol{v}) .
$$

(b) $T\left(v_{1}, v_{2}, v_{3}\right)=\left(v_{1}, 2 v_{2}, 3 v_{3}\right)$.

Solution: T is linear. For $\boldsymbol{u}=\left(u_{1}, u_{2}\right), \boldsymbol{v}=\left(v_{1}, v_{2}\right)$ and $c \in \mathbb{R}$,

$$
\begin{aligned}
T(\boldsymbol{u}+\boldsymbol{v}) & =\left(u_{1}+v_{1}, 2\left(u_{2}+v_{2}\right), 3\left(u_{3}+v_{3}\right)\right) \\
& =\left(u_{1}+v_{1}, 2 u_{2}+2 v_{2}, 3 u_{3}+3 v_{3}\right) \\
& =\left(u_{1}, 2 u_{2}, 3 u_{3}\right)+\left(v_{1}, 2 v_{2}, 3 v_{3}\right) \\
& =T(\boldsymbol{u})+T(\boldsymbol{v})
\end{aligned}
$$

and

$$
T(c \boldsymbol{u})=\left(c v_{1}, 2 c v_{2}, 3 c v_{3}\right)=c\left(v_{1}, 2 v_{2}, 3 v_{3}\right)=c T(\boldsymbol{u}) .
$$

(c) $T\left(v_{1}, v_{2}, v_{3}\right)=v_{1}+v_{2}+v_{3}$.

Solution: T is linear. For $\boldsymbol{u}=\left(u_{1}, u_{2}\right), \boldsymbol{v}=\left(v_{1}, v_{2}\right)$ and $c \in \mathbb{R}$,

$$
\begin{aligned}
T(\boldsymbol{u}+\boldsymbol{v}) & =u_{1}+v_{1}+u_{2}+v_{2}+u_{3}+v_{3} \\
& =\left(u_{1}+u_{2}+u_{3}\right)+\left(v_{1}+v_{2}+v_{3}\right) \\
& =T(\boldsymbol{u})+T(\boldsymbol{v}) .
\end{aligned}
$$

5. Suppose a linear T transforms $(1,1)$ to $(2,2)$ and $(2,0)$ to $(0,0)$. Find $T(\boldsymbol{v})$ when
(a) $\boldsymbol{v}=(2,2)$

Solution: The 2×2 matrix $[T]=\left[\begin{array}{ll}a & b \\ c & d\end{array}\right]$ is such that

$$
[T]\left[\begin{array}{l}
1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right] \quad \text { and } \quad[T]\left[\begin{array}{l}
2 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right]
$$

Thus,

$$
\left\{\begin{array} { l }
{ a + b = 2 } \\
{ 2 a = 0 }
\end{array} \quad \text { and } \quad \left\{\begin{array}{l}
c+d=2 \\
2 c=0
\end{array} .\right.\right.
$$

We have $[T]=\left[\begin{array}{ll}0 & 2 \\ 0 & 2\end{array}\right]$.

$$
T(2,2)=\left[\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
2 \\
2
\end{array}\right]=\left[\begin{array}{l}
4 \\
4
\end{array}\right] .
$$

Therefore $T(2,2)=(4,4)$.
(b) $\boldsymbol{v}=(3,1)$

Solution: We have

$$
T(3,1)=\left[\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right]\left[\begin{array}{l}
3 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

. Therefore $T(3,1)=(2,2)$
(c) $\boldsymbol{v}=(-1,1)$

Solution: We have

$$
T(-1,1)=\left[\begin{array}{ll}
0 & 2 \\
0 & 2
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{l}
2 \\
2
\end{array}\right]
$$

Therefore $T(-1,1)=(2,2)$.
6. Consider the following bases for \mathbb{R}^{2} :

$$
\beta_{V}=\left\{\left[\begin{array}{c}
1 \\
-1
\end{array}\right],\left[\begin{array}{l}
2 \\
3
\end{array}\right]\right\}, \quad \beta_{W}=\left\{\left[\begin{array}{l}
1 \\
2
\end{array}\right],\left[\begin{array}{c}
-1 \\
3
\end{array}\right]\right\}
$$

(a) Write the vector $\boldsymbol{x}=\left[\begin{array}{l}1 \\ 4\end{array}\right]$ (given in the standard basis) in terms of the input basis β_{V}. These coordinates are d_{1} and d_{2}.

Solution:

We want to find d_{1}, d_{2} such that

$$
\left[\begin{array}{c}
1 \\
-1
\end{array}\right] d_{1}+\left[\begin{array}{l}
2 \\
3
\end{array}\right] d_{2}=\left[\begin{array}{l}
1 \\
4
\end{array}\right]
$$

Let

$$
V=\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right]
$$

Thus

$$
\begin{gathered}
V \boldsymbol{d}=\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=\left[\begin{array}{l}
1 \\
4
\end{array}\right] . \\
{\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=V^{-1} \boldsymbol{x}=\left[\begin{array}{cc}
3 / 5 & -2 / 5 \\
1 / 5 & 1 / 5
\end{array}\right]\left[\begin{array}{l}
1 \\
4
\end{array}\right]=\left[\begin{array}{c}
-1 \\
1
\end{array}\right]}
\end{gathered}
$$

Therefore $d_{1}=-1$ and $d_{2}=1$.
(b) Find the change of basis matrix that will find the coordinates of \boldsymbol{x} in the output basis β_{W} using the formula $V \boldsymbol{d}=W \boldsymbol{c}$. What are the new coordinates of \boldsymbol{x} in the output basis?

Solution:

$$
V \boldsymbol{d}=\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right]\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & -1 \\
2 & 3
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=W \boldsymbol{c}
$$

Therefore,

$$
\boldsymbol{c}=W^{-1} V \boldsymbol{d}
$$

and thus, the change of basis matrix is

$$
W^{-1} V=\left[\begin{array}{cc}
3 / 5 & 1 / 5 \\
-2 / 5 & 1 / 5
\end{array}\right]\left[\begin{array}{cc}
1 & 2 \\
-1 & 3
\end{array}\right]=\left[\begin{array}{cc}
2 / 5 & 9 / 5 \\
-3 / 5 & -1 / 5
\end{array}\right]
$$

The new coordinates of \boldsymbol{x} are

$$
\left[\begin{array}{cc}
2 / 5 & 9 / 5 \\
-3 / 5 & -1 / 5
\end{array}\right]\left[\begin{array}{c}
-1 \\
1
\end{array}\right]=\left[\begin{array}{c}
7 / 5 \\
2 / 5
\end{array}\right] .
$$

(c) Consider $\boldsymbol{y}=\left[\begin{array}{c}4 \\ -1\end{array}\right]$ using coordinates in the basis β_{V}. Use your matrix from Part
(b) to write \boldsymbol{y} in terms of the output basis β_{W}.

Solution:

$$
\boldsymbol{y}_{W}=\left[\begin{array}{cc}
2 / 5 & 9 / 5 \\
-3 / 5 & -1 / 5
\end{array}\right]\left[\begin{array}{c}
4 \\
-1
\end{array}\right]=\left[\begin{array}{c}
-1 / 5 \\
-11 / 5
\end{array}\right]
$$

7. Change of basis.

(a) What matrix transforms $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ to $\left[\begin{array}{l}2 \\ 5\end{array}\right]$ and transforms $\left[\begin{array}{l}0 \\ 1\end{array}\right]$ to $\left[\begin{array}{l}1 \\ 3\end{array}\right]$? Solution:

$$
[T]=\left[\begin{array}{ll}
2 & 1 \\
5 & 3
\end{array}\right]
$$

(b) What matrix transforms $\left[\begin{array}{l}2 \\ 5\end{array}\right]$ to $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and transforms $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ to $\left[\begin{array}{l}0 \\ 1\end{array}\right]$?

Solution: It is the inverse of $[T]$ in item (a).

$$
M=\left[\begin{array}{cc}
3 & -1 \\
-5 & 2
\end{array}\right]
$$

(c) Why does no matrix transform $\left[\begin{array}{l}2 \\ 6\end{array}\right]$ to $\left[\begin{array}{l}1 \\ 0\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ to $\left[\begin{array}{l}0 \\ 1\end{array}\right]$? Solution: Because $\left[\begin{array}{l}2 \\ 6\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ are not linearly independent.
(d) What matrix transforms $\left[\begin{array}{l}2 \\ 5\end{array}\right]$ to $\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and transforms $\left[\begin{array}{l}1 \\ 3\end{array}\right]$ to $\left[\begin{array}{l}0 \\ 2\end{array}\right]$?

Solution: Let

$$
M=\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right] .
$$

We have $M\left[\begin{array}{l}2 \\ 5\end{array}\right]=\left[\begin{array}{l}1 \\ 1\end{array}\right]$ and $M\left[\begin{array}{l}1 \\ 3\end{array}\right]=\left[\begin{array}{l}0 \\ 2\end{array}\right]$.

$$
\left\{\begin{array}{l}
2 a+5 b=1 \\
2 c+5 d=1 \\
a+3 b=0 \\
c+3 d=2
\end{array}\right.
$$

Thus $a=3, b=-1 . c=-7, d=3$.

$$
M=\left[\begin{array}{cc}
3 & -1 \\
-7 & 3
\end{array}\right]
$$

