Sec 8.1, 8.2:

1. Let $p(x) \in \mathbb{P}_3$, and consider the subset S of \mathbb{P}_3 with $\int_0^1 p(x) dx = 0$. Verify that S is a subspace of \mathbb{P}_3 , and find its basis, β_S .

Solution: (1) Note that the polynomial $p_0(x) \equiv 0$ satisfies

$$\int_0^1 p_0(x)dx = 0.$$

Therefore $p_0(x) \in S$.

(2) If $p(x), q(x) \in S$, then

$$\int_0^1 (p(x) + q(x))dx = \int_0^1 p(x)dx + \int_0^1 q(x)dx = 0.$$

Therefore $p(x) + q(x) \in S$.

(3) If $c \in \mathbb{R}$ and $p(x) \in S$, then

$$\int_{0}^{1} cp(x)dx = c \int_{0}^{1} p(x)dx = 0.$$

Therefore $cp(x) \in S$. (1), (2) and (3) conclude that S is a subspace of \mathbb{P}_3 . To show a basis of S, note that

$$\int_0^1 x dx = \frac{1}{2}, \ \int_0^1 x^2 dx = \frac{1}{3}, \ \int_0^1 x^3 dx = \frac{1}{4}.$$

Then

$$\int_0^1 \left(x - \frac{1}{2}\right) dx = 0, \ \int_0^1 \left(x^2 - \frac{1}{3}\right) dx = 0, \ \int_0^1 \left(x^3 - \frac{1}{4}\right) dx = 0.$$

Since $x - \frac{1}{2}$, $x^2 - \frac{1}{3}$ and $x^3 - \frac{1}{4}$ are linearly independent in \mathbb{P}_3 , then these polynomials are linearly independent in S. To show that they form a base, let $p(x) = a_0 + a_1x + a_2x^2 + a_3x^3 \in S$. Since

$$0 = \int_0^1 p(x)dx = \int_0^1 a_0 + a_1x + a_2x^2 + a_3x^3dx = a_0 + \frac{a_1}{2} + \frac{a_2}{3} + \frac{a_3}{4}.$$

This implies

$$a_0 = -\frac{a_1}{2} - \frac{a_2}{3} - \frac{a_3}{4}.$$

Therefore

$$p(x) = a_1 \left(x - \frac{1}{2} \right) + a_2 \left(x^2 - \frac{1}{3} \right) + a_3 \left(x^3 - \frac{1}{4} \right),$$

Thus, the polynomials $x - \frac{1}{2}$, $x^2 - \frac{1}{3}$ and $x^3 - \frac{1}{4}$ generate S. The basis is

$$\left\{x - \frac{1}{2}, x^2 - \frac{1}{3}, x^3 - \frac{1}{4}\right\}.$$

2. Prove that T^2 is a linear transformation if T is a linear transformation. Solution: Let V be the vector space on \mathbb{R} . For a fixed $\boldsymbol{u}, \boldsymbol{v} \in V$ and $c \in \mathbb{R}$,

 $T^{2}(\boldsymbol{u} + \boldsymbol{v}) = T(T(\boldsymbol{u} + \boldsymbol{v})) = T(T(\boldsymbol{u}) + T(\boldsymbol{v})) = T(T(\boldsymbol{u})) + T(T(\boldsymbol{v})) = T^{2}(\boldsymbol{u}) + T^{2}(\boldsymbol{v}).$ and

$$T^{2}(c\boldsymbol{u}) = T(T(c\boldsymbol{u})) = T(cT(\boldsymbol{u})) = cT(T(\boldsymbol{u})) = cT^{2}(\boldsymbol{u}).$$

Therefore, T^2 is a linear transformation.

- 3. Which of the following transformations is not linear? Justify your answer. The input vector is $\boldsymbol{v} = (v_1, v_2)$.
 - (a) $T(\boldsymbol{v}) = (v_2, v_1).$ Solution: T is linear. For $\boldsymbol{u} = (u_1, u_2), \, \boldsymbol{v} = (v_1, v_2)$ and $c \in \mathbb{R},$
 - $T(\boldsymbol{u} + \boldsymbol{v}) = T(u_1 + v_1, u_2 + v_2) = (u_2 + v_2, u_1 + v_1) = (u_2, u_1) + (v_2, v_1) = T(\boldsymbol{u}) + T(\boldsymbol{v}),$ $T(c\boldsymbol{u}) = (cu_2, cu_1) = c(u_2, u_1) = cT(\boldsymbol{u}).$
 - (b) $T(\boldsymbol{v}) = (0, v_1).$ Solution: T is linear. For $\boldsymbol{u} = (u_1, u_2), \, \boldsymbol{v} = (v_1, v_2)$ and $c \in \mathbb{R}$,

$$T(u + v) = (0, u_1 + v_1) = (0, u_1) + (0, v_1) = T(u) + T(v),$$

$$T(cu) = (0, cu) = c(0, u) = cT(u).$$

(c) $T(\boldsymbol{v}) = (v_1, v_1)$. Solution: T is linear. For $\boldsymbol{u} = (u_1, u_2)$ and $\boldsymbol{v} = (v_1, v_2)$ and $c \in \mathbb{R}$,

$$T(\boldsymbol{u} + \boldsymbol{v}) = T[(u_1 + v_1, u_2 + v_2)] = (u_1 + v_1, u_1 + v_1) = (u_1, u_1) + (v_1, v_1) = T(\boldsymbol{u}) + T(\boldsymbol{v})$$
$$T(c\boldsymbol{u}) = (cu_1, cu_1) = c(u_1, u_1) = cT(\boldsymbol{u}).$$

(d) $T(\boldsymbol{v}) = (0, 1)$. Solution: T is NOT linear. Choose c = 2 and $\boldsymbol{u} = (1, 1)$.

$$T(2\mathbf{u}) = (0,1) \neq (0,2) = 2T(\mathbf{u}).$$

- 4. Prove whether the following transformations are linear or not.
 - (a) $T(v) = \frac{v}{||v||}$. Solution: *T* is NOT linear. Choose c = 2 and any $v \neq 0$.

$$T(2\boldsymbol{v}) = \frac{2\boldsymbol{v}}{||2\boldsymbol{v}||} = \frac{2\boldsymbol{v}}{2||\boldsymbol{v}||} = \frac{\boldsymbol{v}}{||\boldsymbol{v}||} = T(\boldsymbol{v}) \neq 2T(\boldsymbol{v}).$$

(b) $T(v_1, v_2, v_3) = (v_1, 2v_2, 3v_3).$ Solution: *T* is linear. For $u = (u_1, u_2), v = (v_1, v_2)$ and $c \in \mathbb{R}$,

$$T(\boldsymbol{u} + \boldsymbol{v}) = (u_1 + v_1, 2(u_2 + v_2), 3(u_3 + v_3))$$

= $(u_1 + v_1, 2u_2 + 2v_2, 3u_3 + 3v_3)$
= $(u_1, 2u_2, 3u_3) + (v_1, 2v_2, 3v_3)$
= $T(\boldsymbol{u}) + T(\boldsymbol{v})$

and

$$T(c\mathbf{u}) = (cv_1, 2cv_2, 3cv_3) = c(v_1, 2v_2, 3v_3) = cT(\mathbf{u}).$$

(c) $T(v_1, v_2, v_3) = v_1 + v_2 + v_3$. Solution: *T* is linear. For $u = (u_1, u_2), v = (v_1, v_2)$ and $c \in \mathbb{R}$,

$$T(u + v) = u_1 + v_1 + u_2 + v_2 + u_3 + v_3$$

= $(u_1 + u_2 + u_3) + (v_1 + v_2 + v_3)$
= $T(u) + T(v)$.

- 5. Suppose a linear T transforms (1,1) to (2,2) and (2,0) to (0,0). Find $T(\boldsymbol{v})$ when
 - (a) $\boldsymbol{v} = (2, 2)$ **Solution:** The 2 × 2 matrix $[T] = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is such that $[T] \begin{bmatrix} 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$ and $[T] \begin{bmatrix} 2 \\ 0 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Thus,

We have
$$\begin{bmatrix} T \end{bmatrix} = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix}$$
.
 $T(2,2) = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 2 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \\ 4 \end{bmatrix}$.

Therefore T(2, 2) = (4, 4).

(b) $\boldsymbol{v} = (3, 1)$ Solution: We have

$$T(3,1) = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}$$

. Therefore T(3, 1) = (2, 2)

(c) v = (-1, 1)Solution: We have $T(-1, 1) = \begin{bmatrix} 0 & 2 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix} = \begin{bmatrix} 2 \end{bmatrix}$

$$T(-1,1) = \begin{bmatrix} 0 & 2 \\ 0 & 2 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 2 \\ 2 \end{bmatrix}.$$

Therefore T(-1, 1) = (2, 2).

6. Consider the following bases for \mathbb{R}^2 :

$$\beta_V = \left\{ \begin{bmatrix} 1\\-1 \end{bmatrix}, \begin{bmatrix} 2\\3 \end{bmatrix} \right\}, \quad \beta_W = \left\{ \begin{bmatrix} 1\\2 \end{bmatrix}, \begin{bmatrix} -1\\3 \end{bmatrix} \right\}$$

(a) Write the vector $\boldsymbol{x} = \begin{bmatrix} 1 \\ 4 \end{bmatrix}$ (given in the standard basis) in terms of the input basis β_V . These coordinates are d_1 and d_2 .

Solution:

We want to find d_1, d_2 such that

$$\begin{bmatrix} 1\\-1 \end{bmatrix} d_1 + \begin{bmatrix} 2\\3 \end{bmatrix} d_2 = \begin{bmatrix} 1\\4 \end{bmatrix}$$

Let

$$V = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix}.$$

Thus

$$V\boldsymbol{d} = \begin{bmatrix} 1 & 2\\ -1 & 3 \end{bmatrix} \begin{bmatrix} d_1\\ d_2 \end{bmatrix} = \begin{bmatrix} 1\\ 4 \end{bmatrix}.$$
$$\begin{bmatrix} d_1\\ d_2 \end{bmatrix} = V^{-1}\boldsymbol{x} = \begin{bmatrix} 3/5 & -2/5\\ 1/5 & 1/5 \end{bmatrix} \begin{bmatrix} 1\\ 4 \end{bmatrix} = \begin{bmatrix} -1\\ 1 \end{bmatrix}$$
$$= 1 \text{ and } d_2 = 1$$

Therefore $d_1 = -1$ and $d_2 = 1$.

(b) Find the change of basis matrix that will find the coordinates of \boldsymbol{x} in the output basis β_W using the formula $V\boldsymbol{d} = W\boldsymbol{c}$. What are the new coordinates of \boldsymbol{x} in the output basis?

Solution:

$$V\boldsymbol{d} = \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} \begin{bmatrix} d_1 \\ d_2 \end{bmatrix} = \begin{bmatrix} 1 & -1 \\ 2 & 3 \end{bmatrix} \begin{bmatrix} c_1 \\ c_2 \end{bmatrix} = W\boldsymbol{c}$$

Therefore,

$$\boldsymbol{c} = W^{-1} V \boldsymbol{d},$$

and thus, the change of basis matrix is

$$W^{-1}V = \begin{bmatrix} 3/5 & 1/5 \\ -2/5 & 1/5 \end{bmatrix} \begin{bmatrix} 1 & 2 \\ -1 & 3 \end{bmatrix} = \begin{bmatrix} 2/5 & 9/5 \\ -3/5 & -1/5 \end{bmatrix}$$

The new coordinates of \boldsymbol{x} are

$$\begin{bmatrix} 2/5 & 9/5 \\ -3/5 & -1/5 \end{bmatrix} \begin{bmatrix} -1 \\ 1 \end{bmatrix} = \begin{bmatrix} 7/5 \\ 2/5 \end{bmatrix}.$$

(c) Consider $\boldsymbol{y} = \begin{bmatrix} 4 \\ -1 \end{bmatrix}$ using coordinates in the basis β_V . Use your matrix from Part (b) to write \boldsymbol{y} in terms of the output basis β_W . Solution:

$$\boldsymbol{y}_W = \begin{bmatrix} 2/5 & 9/5 \\ -3/5 & -1/5 \end{bmatrix} \begin{bmatrix} 4 \\ -1 \end{bmatrix} = \begin{bmatrix} -1/5 \\ -11/5 \end{bmatrix}$$

- 7. Change of basis.
 - (a) What matrix transforms $\begin{bmatrix} 1\\0 \end{bmatrix}$ to $\begin{bmatrix} 2\\5 \end{bmatrix}$ and transforms $\begin{bmatrix} 0\\1 \end{bmatrix}$ to $\begin{bmatrix} 1\\3 \end{bmatrix}$? Solution: $[T] = \begin{bmatrix} 2 & 1\\5 & 3 \end{bmatrix}$

(b) What matrix transforms $\begin{bmatrix} 2\\5 \end{bmatrix}$ to $\begin{bmatrix} 1\\0 \end{bmatrix}$ and transforms $\begin{bmatrix} 1\\3 \end{bmatrix}$ to $\begin{bmatrix} 0\\1 \end{bmatrix}$? Solution: It is the inverse of [T] in item (a).

$$M = \begin{bmatrix} 3 & -1 \\ -5 & 2 \end{bmatrix}$$

(c) Why does no matrix transform $\begin{bmatrix} 2\\6 \end{bmatrix}$ to $\begin{bmatrix} 1\\0 \end{bmatrix}$ and $\begin{bmatrix} 1\\3 \end{bmatrix}$ to $\begin{bmatrix} 0\\1 \end{bmatrix}$? Solution: Because $\begin{bmatrix} 2\\6 \end{bmatrix}$ and $\begin{bmatrix} 1\\3 \end{bmatrix}$ are not linearly independent. (d) What matrix transforms $\begin{bmatrix} 2\\5 \end{bmatrix}$ to $\begin{bmatrix} 1\\1 \end{bmatrix}$ and transforms $\begin{bmatrix} 1\\3 \end{bmatrix}$ to $\begin{bmatrix} 0\\2 \end{bmatrix}$? **Solution:** Let $M = \begin{bmatrix} a & b\\c & d \end{bmatrix}.$ We have $M \begin{bmatrix} 2\\5 \end{bmatrix} = \begin{bmatrix} 1\\1 \end{bmatrix}$ and $M \begin{bmatrix} 1\\3 \end{bmatrix} = \begin{bmatrix} 0\\2 \end{bmatrix}.$ $\begin{cases} 2a+5b=1\\2c+5d=1\\a+3b=0\\c+3d=2 \end{cases}$

Thus a = 3, b = -1, c = -7, d = 3.

$$M = \begin{bmatrix} 3 & -1 \\ -7 & 3 \end{bmatrix}.$$