Sec 6.4, 6.5:

1. Diagonalize the following symmetric matrix:

$$A = \begin{bmatrix} 3 & -2 & 4 \\ -2 & 6 & 2 \\ 4 & 2 & 3 \end{bmatrix}.$$

Solution: We have

$$|\lambda I - A| = \begin{vmatrix} \lambda - 3 & 2 & -4 \\ 2 & \lambda - 6 & -2 \\ -4 & -2 & \lambda - 3 \end{vmatrix} = (\lambda + 2)(\lambda - 7)^2.$$

Thus, the eigenvalues of A are,

$$\lambda_{1} = -2, \quad \lambda_{2} = \lambda_{3} = 7.$$
Solve $(A - \lambda I)\mathbf{x} = \mathbf{0}$ separately for $\lambda_{1} = -2, \lambda_{2} = 7$ and $\lambda_{3} = 7$:
 $(A + 2I)\mathbf{x} = \begin{bmatrix} -5 & 2 & -4 \\ 2 & -8 & -2 \\ -4 & -2 & -5 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ yields an eigenvector $\mathbf{x}_{1} = \begin{bmatrix} 2 \\ 1 \\ -2 \end{bmatrix}$ for $\lambda_{1} = -2,$
 $(A - 7I)\mathbf{x} = \begin{bmatrix} 4 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 4 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ yields two eigenvectors $\mathbf{x}_{2} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$ and
 $\mathbf{x}_{3} = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ for $\lambda_{2} = \lambda_{3} = 7.$

Note that x_2 and x_3 are not orthogonal, so we use G-S to make them orthogonal and we get: $\boldsymbol{x_2} = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}$ and $\boldsymbol{x_3} = \begin{bmatrix} 4 \\ 2 \\ 5 \end{bmatrix}$. It's clear that $\boldsymbol{x_1}$, $\boldsymbol{x_2}$ and $\boldsymbol{x_3}$ are orthogonal but not yet orthonormal. Divide these

eigenvectors by their length to get unit vectors,

$$\boldsymbol{x_1} = \begin{bmatrix} 2/3\\ 1/3\\ -2/3 \end{bmatrix}, \quad \boldsymbol{x_2} = \begin{bmatrix} 1/\sqrt{5}\\ -2/\sqrt{5}\\ 0 \end{bmatrix}, \quad and \quad \boldsymbol{x_3} = \begin{bmatrix} 4/\sqrt{45}\\ 2/\sqrt{45}\\ 5/\sqrt{45} \end{bmatrix}.$$

Then put these unit vectors to the columns of Q,

$$Q = \begin{bmatrix} 2/3 & 1/\sqrt{5} & 4/\sqrt{45} \\ 1/3 & -2/\sqrt{5} & 2/\sqrt{45} \\ -2/3 & 0 & 5/\sqrt{45} \end{bmatrix},$$

and diagonalize matrix A by

$$\Lambda = Q^T A Q = \begin{bmatrix} -2 & 0 & 0 \\ 0 & 7 & 0 \\ 0 & 0 & 7 \end{bmatrix}.$$

- 2. Decide whether the following matrices are positive definite, positive semi-definite, or neither.
 - (a) $A = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2 \end{bmatrix}$ Solution: We have

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 1 & 1 \\ 1 & \lambda - 2 & 1 \\ 1 & 1 & \lambda - 2 \end{vmatrix} = \lambda (\lambda - 3)^2.$$

Thus, the eigenvalues of A are,

$$\lambda_1 = 0, \quad \lambda_2 = \lambda_3 = 3.$$

All eigenvalues of A are greater than or equal to 0, which means that matrix A is positive semi-definite.

(b) $B = \begin{bmatrix} 2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2 \end{bmatrix}$ Solution: We have

$$\lambda I - B = \begin{vmatrix} \lambda - 2 & 1 & 1 \\ 1 & \lambda - 2 & -1 \\ 1 & -1 & \lambda - 2 \end{vmatrix} = (\lambda - 4)(\lambda - 1)^2.$$

Thus, the eigenvalues of A are,

$$\lambda_1 = 4, \quad \lambda_2 = \lambda_3 = 1.$$

All eigenvalues of B are more than 0, which means that matrix A is positive definite.

(c)
$$C = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}^2$$

Solution: Set $D = \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix}$ and no zero vector $\boldsymbol{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix}$. We have
 $x^T C x = x^T \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0 \end{bmatrix} x = (Dx)^T D x = (2x+y)^2 + (y+2z)^2 + (x+z)^2 > 0$

It means that matrix C is positive definite.

- 3. Suppose each "Gibonacci" number G_{k+2} is the average of the two previous numbers G_{k+1} and G_k . Then $G_{k+2} = \frac{1}{2}(G_{k+1} + G_k)$:
 - (a) Starting with initial conditions $G_0 = 0$ and $G_1 = 1$, list the elements up to G_6 of the sequence. Solution: We have

$$G_2 = 1/2, G_3 = 3/4, G_4 = 5/8, G_5 = 11/16, G_6 = 21/32$$

(b) Express the given sequence as $\mathbf{u}_{k+1} = A\mathbf{u}_k$. Clearly indicate the matrix A, as well as the vectors \mathbf{u}_{k+1} , \mathbf{u}_k , and the vector of initial conditions \mathbf{u}_0 . Solution: Set

$$\mathbf{u}_{k} = \begin{bmatrix} G_{k} \\ G_{k+1} \end{bmatrix}, \mathbf{u}_{k+1} = \begin{bmatrix} G_{k+1} \\ G_{k+2} \end{bmatrix}$$
$$\mathbf{u}_{k+1} = A\mathbf{u}_{k}, \mathbf{u}_{0} = \begin{bmatrix} G_{0} \\ G_{1} \end{bmatrix},$$

Where $A = \begin{bmatrix} 0 & 1 \\ 1/2 & 1/2 \end{bmatrix}$.

(c) Find a formula for \mathbf{u}_{k+1} in terms of the initial conditions \mathbf{u}_0 . *Hint*: Diagonalize A.

Solution: We have

 \mathbf{SO}

$$|\lambda I - A| = \begin{vmatrix} \lambda & -1 \\ -1/2 & \lambda - 1/2 \end{vmatrix} = (\lambda + 1/2)(\lambda - 1).$$

Thus, the eigenvalues of A are,

$$\lambda_1 = -1/2, \quad \lambda_2 = 1.$$

Further more, the eigenvectors are $\boldsymbol{x_1} = \begin{bmatrix} -2\\ 1 \end{bmatrix}$ and $\boldsymbol{x_2} = \begin{bmatrix} -1\\ -1 \end{bmatrix}$ with corresponding eigenvalues. So put the eigenvectors to the columns of Q,

$$Q = \begin{bmatrix} -2 & -1 \\ 1 & -1 \end{bmatrix},$$

and substitute $A = Q\Lambda Q^{-1}$ into iteration equation,

$$\mathbf{u}_{k+1} = A\mathbf{u}_k = A^k \mathbf{u}_0 = Q\Lambda^k Q^{-1} \mathbf{u}_0 = \begin{bmatrix} -2 & -1 \\ 1 & -1 \end{bmatrix} \begin{bmatrix} (-1/2)^k & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} -1/3 & 1/3 \\ -1/3 & -2/3 \end{bmatrix} \begin{bmatrix} 0 \\ 1 \end{bmatrix}.$$

Sec 7.1, 7.2:

1. Consider the matrix

$$A = \begin{bmatrix} 1 & 4 \\ 2 & 8 \end{bmatrix}.$$

(a) Compute $A^T A$, and find its eigenvalues λ_1 and λ_2 , such that $\lambda_1 > \lambda_2$. What are the singular values? What is the matrix Σ , such that $A = U \Sigma V^T$. Solution: Set

$$A^T A = \begin{bmatrix} 1 & 2\\ 4 & 8 \end{bmatrix} \begin{bmatrix} 1 & 4\\ 2 & 8 \end{bmatrix} = \begin{bmatrix} 5 & 20\\ 20 & 80 \end{bmatrix},$$

and we have the eigenvalues of $A^T A$ are,

$$\lambda_1 = 85, \quad \lambda_2 = 0.$$

The singular values $\sigma_1 = \sqrt{85}$ and $\sigma_2 = 0$, and $\Sigma = \begin{bmatrix} \sqrt{85} & 0 \\ 0 & 0 \end{bmatrix}$.

(b) Compute the unit eigenvectors \boldsymbol{v}_1 and \boldsymbol{v}_2 , which correspond to eigenvalues λ_1 and λ_2 , respectively. Which matrix of the SVD do these column vectors correspond to?

Solution: Solve $(A^T A - \lambda I) \boldsymbol{v} = \boldsymbol{0}$ separately for $\lambda_1 = 85$ and $\lambda_2 = 0$: $(A^T A - 85I) \boldsymbol{v}_1 = \begin{bmatrix} -80 & 20 \\ 20 & -5 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ yields an eigenvector $\boldsymbol{v}_1 = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 1/\sqrt{17} \\ 4/\sqrt{17} \end{bmatrix}$ for $\lambda_1 = 85$, $(A^T A - 0I) \boldsymbol{v}_2 = \begin{bmatrix} 5 & 20 \\ 20 & 80 \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$ yields an eigenvector $\boldsymbol{v}_2 = \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} 4/\sqrt{17} \\ -1/\sqrt{17} \end{bmatrix}$ for $\lambda_2 = 0$,

It's clear that v_1 and v_2 are linearly independent unit eigenvectors of $A^T A$. In addition,

$$A^TA = (U\Sigma V^T)^T (U\Sigma V^T) = V\Sigma U^T U\Sigma V^T = V\Sigma^2 V^T$$

Thus, the column vectors about eigenvectors correspond to the matrix V of SVD.

2. Consider the matrix

$$A = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$$

(a) Compute $A^T A$ and find its eigenvalues. Solution: Set

$$A^{T}A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix},$$

and we have

$$|\lambda I - A^T A| = \begin{vmatrix} \lambda - 1 & -1 & 0 \\ -1 & \lambda - 2 & -1 \\ 0 & -1 & \lambda - 1 \end{vmatrix} = \lambda(\lambda - 1)(\lambda - 3).$$

Thus, the eigenvalues of $A^T A$ are,

$$\lambda_1 = 0, \quad \lambda_2 = 1, \quad \lambda_3 = 3.$$

(b) Compute AA^T and find its eigenvalues. Solution: Set

$$AA^{T} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 1 \\ 1 & 2 \end{bmatrix},$$

and we have

$$|\lambda I - AA^{T}| = \begin{vmatrix} \lambda - 2 & -1 \\ -1 & \lambda - 2 \end{vmatrix} = (\lambda - 1)(\lambda - 3).$$

Thus, the eigenvalues of AA^T are,

$$\lambda_1 = 1, \quad \lambda_2 = 3.$$

(c) Compute the eigenvectors of $A^T A$. Solution: Solve $(A^T A - \lambda I) \mathbf{v} = \mathbf{0}$ separately for $\lambda_1 = 3$, $\lambda_2 = 1$ and $\lambda_3 = 0$: $\lambda_1 = 3$: $(A^T A - 3I) \mathbf{v}_1 = \begin{bmatrix} -2 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -2 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ yields an eigenvector $\mathbf{v}_1 = \begin{bmatrix} 1 \\ 2 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$. $\lambda_2 = 1$: $(A^T A - I) \mathbf{v}_2 = \begin{bmatrix} 0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ yields an eigenvector $\mathbf{v}_2 = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix} \rightarrow \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix}$. $\lambda_3 = 0$: $(A^T A - 0I) \mathbf{v}_3 = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} a \\ b \\ c \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}$ yields an eigenvector $\mathbf{v}_3 = \begin{bmatrix} 1 \\ -1 \\ 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$.

It's clear that v_1 , v_2 and v_3 are linearly independent eigenvectors of $A^T A$.

(d) Compute the eigenvectors of AA^T . Solution: The eigenvectors of AA^T are the same as the left singular vectors u_1 and u_2 .

$$u_{1} = \frac{1}{\sigma_{1}} A \boldsymbol{v_{1}} = \frac{1}{\sqrt{3}} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$$
$$u_{2} = \frac{1}{\sigma_{1}} A \boldsymbol{v_{2}} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix} \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix} = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$$

It's clear that u_1 and u_2 are linearly independent eigenvectors of AA^T .

- (e) Find orthonormal bases for the four fundamental subspaces of A. **Solution:** Combine (c) and (d), the following results can be showed. For the column space, the orhomnormal bases are $\boldsymbol{u_1} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$, $\boldsymbol{u_2} = \begin{bmatrix} 1/\sqrt{2} \\ -1/\sqrt{2} \end{bmatrix}$. For the left nullspace, the only element in this space is **0**. For the row space, the orhomnormal bases are $\boldsymbol{v_1} = \begin{bmatrix} 1/\sqrt{6} \\ 2/\sqrt{6} \\ 1/\sqrt{6} \end{bmatrix}$, $\boldsymbol{v_2} = \begin{bmatrix} 1/\sqrt{2} \\ 0 \\ -1/\sqrt{2} \end{bmatrix}$. For the nullspace, the orhomnormal bases is $\boldsymbol{v_3} = \begin{bmatrix} 1/\sqrt{3} \\ -1/\sqrt{3} \\ 1/\sqrt{3} \end{bmatrix}$.
- (f) Write $A = U\Sigma V^T$. Solution: Combine (b), (c) and (d), and set the following matrices.

$$U = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix}, V = \begin{bmatrix} 1/\sqrt{6} & 1/\sqrt{2} & 1/\sqrt{3} \\ 2/\sqrt{6} & 0 & -1/\sqrt{3} \\ 1/\sqrt{6} & -1/\sqrt{2} & 1/\sqrt{3} \end{bmatrix} and \quad \Sigma = \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix}$$

Thus $A = U\Sigma V^T = \begin{bmatrix} 1/\sqrt{2} & 1/\sqrt{2} \\ 1/\sqrt{2} & -1/\sqrt{2} \end{bmatrix} \begin{bmatrix} \sqrt{3} & 0 & 0 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1/\sqrt{6} & 2/\sqrt{6} & 1/\sqrt{6} \\ 1/\sqrt{2} & 0 & -1/\sqrt{2} \\ 1/\sqrt{3} & -1/\sqrt{3} & 1/\sqrt{3} \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 1 \end{bmatrix}.$