Sec 6.4, 6.5:

1. Diagonalize the following symmetric matrix:

$$
A=\left[\begin{array}{ccc}
3 & -2 & 4 \\
-2 & 6 & 2 \\
4 & 2 & 3
\end{array}\right]
$$

Solution: We have

$$
|\lambda I-A|=\left|\begin{array}{rrr}
\lambda-3 & 2 & -4 \\
2 & \lambda-6 & -2 \\
-4 & -2 & \lambda-3
\end{array}\right|=(\lambda+2)(\lambda-7)^{2} .
$$

Thus, the eigenvalues of A are,

$$
\lambda_{1}=-2, \quad \lambda_{2}=\lambda_{3}=7
$$

Solve $(A-\lambda I) \boldsymbol{x}=\mathbf{0}$ separately for $\lambda_{1}=-2, \lambda_{2}=7$ and $\lambda_{3}=7$:
$(A+2 I) \boldsymbol{x}=\left[\begin{array}{ccc}-5 & 2 & -4 \\ 2 & -8 & -2 \\ -4 & -2 & -5\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ yields an eigenvector $\boldsymbol{x}_{\mathbf{1}}=\left[\begin{array}{c}2 \\ 1 \\ -2\end{array}\right]$ for $\lambda_{1}=$ -2 ,
$(A-7 I) \boldsymbol{x}=\left[\begin{array}{ccc}4 & 2 & -4 \\ 2 & 1 & -2 \\ -4 & -2 & 4\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ yields two eigenvectors $\boldsymbol{x}_{\boldsymbol{2}}=\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right]$ and $\boldsymbol{x}_{\mathbf{3}}=\left[\begin{array}{l}1 \\ 0 \\ 1\end{array}\right]$ for $\lambda_{2}=\lambda_{3}=7$.
Note that $\boldsymbol{x}_{\mathbf{2}}$ and $\boldsymbol{x}_{\boldsymbol{3}}$ are not orthogonal, so we use G-S to make them orthogonal and we get: $\boldsymbol{x}_{\mathbf{2}}=\left[\begin{array}{c}1 \\ -2 \\ 0\end{array}\right]$ and $\boldsymbol{x}_{\boldsymbol{3}}=\left[\begin{array}{l}4 \\ 2 \\ 5\end{array}\right]$.
It's clear that $\boldsymbol{x}_{1}, \boldsymbol{x}_{2}$ and \boldsymbol{x}_{3} are orthogonal but not yet orthonormal. Divide these eigenvectors by their length to get unit vectors,

$$
\boldsymbol{x}_{\boldsymbol{1}}=\left[\begin{array}{c}
2 / 3 \\
1 / 3 \\
-2 / 3
\end{array}\right], \quad \boldsymbol{x}_{\mathbf{2}}=\left[\begin{array}{c}
1 / \sqrt{5} \\
-2 / \sqrt{5} \\
0
\end{array}\right], \quad \text { and } \quad \boldsymbol{x}_{\boldsymbol{3}}=\left[\begin{array}{l}
4 / \sqrt{45} \\
2 / \sqrt{45} \\
5 / \sqrt{45}
\end{array}\right] .
$$

Then put these unit vectors to the columns of Q,

$$
Q=\left[\begin{array}{ccc}
2 / 3 & 1 / \sqrt{5} & 4 / \sqrt{45} \\
1 / 3 & -2 / \sqrt{5} & 2 / \sqrt{45} \\
-2 / 3 & 0 & 5 / \sqrt{45}
\end{array}\right],
$$

and diagonalize matrix A by

$$
\Lambda=Q^{T} A Q=\left[\begin{array}{ccc}
-2 & 0 & 0 \\
0 & 7 & 0 \\
0 & 0 & 7
\end{array}\right]
$$

2. Decide whether the following matrices are positive definite, positive semi-definite, or neither.
(a) $A=\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & -1 \\ -1 & -1 & 2\end{array}\right]$

Solution: We have

$$
|\lambda I-A|=\left|\begin{array}{rrr}
\lambda-2 & 1 & 1 \\
1 & \lambda-2 & 1 \\
1 & 1 & \lambda-2
\end{array}\right|=\lambda(\lambda-3)^{2} .
$$

Thus, the eigenvalues of A are,

$$
\lambda_{1}=0, \quad \lambda_{2}=\lambda_{3}=3
$$

All eigenvalues of A are greater than or equal to 0 , which means that matrix A is positive semi-definite.
(b) $B=\left[\begin{array}{ccc}2 & -1 & -1 \\ -1 & 2 & 1 \\ -1 & 1 & 2\end{array}\right]$

Solution: We have

$$
|\lambda I-B|=\left|\begin{array}{rrr}
\lambda-2 & 1 & 1 \\
1 & \lambda-2 & -1 \\
1 & -1 & \lambda-2
\end{array}\right|=(\lambda-4)(\lambda-1)^{2} .
$$

Thus, the eigenvalues of A are,

$$
\lambda_{1}=4, \quad \lambda_{2}=\lambda_{3}=1
$$

All eigenvalues of B are more than 0 , which means that matrix A is positive definite.
(c) $C=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0\end{array}\right]^{2}$

Solution: Set $D=\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0\end{array}\right]$ and no zero vector $\boldsymbol{x}=\left[\begin{array}{l}x \\ y \\ z\end{array}\right]$. We have $x^{T} C x=x^{T}\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0\end{array}\right]\left[\begin{array}{lll}0 & 1 & 2 \\ 1 & 0 & 1 \\ 2 & 1 & 0\end{array}\right] x=(D x)^{T} D x=(2 x+y)^{2}+(y+2 z)^{2}+(x+z)^{2}>0$
It means that matrix C is positive definite.
3. Suppose each "Gibonacci" number G_{k+2} is the average of the two previous numbers G_{k+1} and G_{k}. Then $G_{k+2}=\frac{1}{2}\left(G_{k+1}+G_{k}\right)$:
(a) Starting with initial conditions $G_{0}=0$ and $G_{1}=1$, list the elements up to G_{6} of the sequence.
Solution: We have

$$
G_{2}=1 / 2, G_{3}=3 / 4, G_{4}=5 / 8, G_{5}=11 / 16, G_{6}=21 / 32
$$

(b) Express the given sequence as $\mathbf{u}_{k+1}=A \mathbf{u}_{k}$. Clearly indicate the matrix A, as well as the vectors $\mathbf{u}_{k+1}, \mathbf{u}_{k}$, and the vector of initial conditions \mathbf{u}_{0}.
Solution: Set

$$
\mathbf{u}_{k}=\left[\begin{array}{c}
G_{k} \\
G_{k+1}
\end{array}\right], \mathbf{u}_{k+1}=\left[\begin{array}{l}
G_{k+1} \\
G_{k+2}
\end{array}\right],
$$

so

$$
\mathbf{u}_{k+1}=A \mathbf{u}_{k}, \mathbf{u}_{0}=\left[\begin{array}{l}
G_{0} \\
G_{1}
\end{array}\right]
$$

Where $A=\left[\begin{array}{cc}0 & 1 \\ 1 / 2 & 1 / 2\end{array}\right]$.
(c) Find a formula for \mathbf{u}_{k+1} in terms of the initial conditions \mathbf{u}_{0}. Hint: Diagonalize A.
Solution: We have

$$
|\lambda I-A|=\left|\begin{array}{rr}
\lambda & -1 \\
-1 / 2 & \lambda-1 / 2
\end{array}\right|=(\lambda+1 / 2)(\lambda-1) .
$$

Thus, the eigenvalues of A are,

$$
\lambda_{1}=-1 / 2, \quad \lambda_{2}=1
$$

Further more, the eigenvectors are $\boldsymbol{x}_{\mathbf{1}}=\left[\begin{array}{c}-2 \\ 1\end{array}\right]$ and $\boldsymbol{x}_{2}=\left[\begin{array}{l}-1 \\ -1\end{array}\right]$ with corresponding eigenvalues. So put the eigenvectors to the columns of Q,

$$
Q=\left[\begin{array}{cc}
-2 & -1 \\
1 & -1
\end{array}\right]
$$

and substitute $A=Q \Lambda Q^{-1}$ into iteration equation,

$$
\mathbf{u}_{k+1}=A \mathbf{u}_{k}=A^{k} \mathbf{u}_{0}=Q \Lambda^{k} Q^{-1} \mathbf{u}_{0}=\left[\begin{array}{cc}
-2 & -1 \\
1 & -1
\end{array}\right]\left[\begin{array}{cc}
(-1 / 2)^{k} & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{cc}
-1 / 3 & 1 / 3 \\
-1 / 3 & -2 / 3
\end{array}\right]\left[\begin{array}{l}
0 \\
1
\end{array}\right]
$$

Sec 7.1, 7.2:

1. Consider the matrix

$$
A=\left[\begin{array}{ll}
1 & 4 \\
2 & 8
\end{array}\right]
$$

(a) Compute $A^{T} A$, and find its eigenvalues λ_{1} and λ_{2}, such that $\lambda_{1}>\lambda_{2}$. What are the singular values? What is the matrix Σ, such that $A=U \Sigma V^{T}$.
Solution: Set

$$
A^{T} A=\left[\begin{array}{ll}
1 & 2 \\
4 & 8
\end{array}\right]\left[\begin{array}{ll}
1 & 4 \\
2 & 8
\end{array}\right]=\left[\begin{array}{cc}
5 & 20 \\
20 & 80
\end{array}\right]
$$

and we have the eigenvalues of $A^{T} A$ are,

$$
\lambda_{1}=85, \quad \lambda_{2}=0 .
$$

The singular values $\sigma_{1}=\sqrt{85}$ and $\sigma_{2}=0$, and $\Sigma=\left[\begin{array}{cc}\sqrt{85} & 0 \\ 0 & 0\end{array}\right]$.
(b) Compute the unit eigenvectors \boldsymbol{v}_{1} and \boldsymbol{v}_{2}, which correspond to eigenvalues λ_{1} and λ_{2}, respectively. Which matrix of the SVD do these column vectors correspond to?
Solution: Solve $\left(A^{T} A-\lambda I\right) \boldsymbol{v}=\mathbf{0}$ separately for $\lambda_{1}=85$ and $\lambda_{2}=0$:
$\left(A^{T} A-85 I\right) \boldsymbol{v}_{\mathbf{1}}=\left[\begin{array}{cc}-80 & 20 \\ 20 & -5\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ yields an eigenvector $\boldsymbol{v}_{1}=\left[\begin{array}{l}a \\ b\end{array}\right]=$ $\left[\begin{array}{l}1 / \sqrt{17} \\ 4 / \sqrt{17}\end{array}\right]$ for $\lambda_{1}=85$,
$\left(A^{T} A-0 I\right) \boldsymbol{v}_{2}=\left[\begin{array}{cc}5 & 20 \\ 20 & 80\end{array}\right]\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$ yields an eigenvector $\boldsymbol{v}_{2}=\left[\begin{array}{l}a \\ b\end{array}\right]=\left[\begin{array}{c}4 / \sqrt{17} \\ -1 / \sqrt{17}\end{array}\right]$ for $\lambda_{2}=0$,
It's clear that $\boldsymbol{v}_{\mathbf{1}}$ and $\boldsymbol{v}_{\mathbf{2}}$ are linearly independent unit eigenvectors of $A^{T} A$.
In addition,

$$
A^{T} A=\left(U \Sigma V^{T}\right)^{T}\left(U \Sigma V^{T}\right)=V \Sigma U^{T} U \Sigma V^{T}=V \Sigma^{2} V^{T}
$$

Thus, the column vectors about eigenvectors correspond to the matrix V of SVD.
2. Consider the matrix

$$
A=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]
$$

(a) Compute $A^{T} A$ and find its eigenvalues.

Solution: Set

$$
A^{T} A=\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]=\left[\begin{array}{lll}
1 & 1 & 0 \\
1 & 2 & 1 \\
0 & 1 & 1
\end{array}\right]
$$

and we have

$$
\left|\lambda I-A^{T} A\right|=\left|\begin{array}{rrr}
\lambda-1 & -1 & 0 \\
-1 & \lambda-2 & -1 \\
0 & -1 & \lambda-1
\end{array}\right|=\lambda(\lambda-1)(\lambda-3) .
$$

Thus, the eigenvalues of $A^{T} A$ are,

$$
\lambda_{1}=0, \quad \lambda_{2}=1, \quad \lambda_{3}=3 .
$$

(b) Compute $A A^{T}$ and find its eigenvalues.

Solution: Set

$$
A A^{T}=\left[\begin{array}{lll}
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
0 & 1
\end{array}\right]=\left[\begin{array}{ll}
2 & 1 \\
1 & 2
\end{array}\right]
$$

and we have

$$
\left|\lambda I-A A^{T}\right|=\left|\begin{array}{rr}
\lambda-2 & -1 \\
-1 & \lambda-2
\end{array}\right|=(\lambda-1)(\lambda-3)
$$

Thus, the eigenvalues of $A A^{T}$ are,

$$
\lambda_{1}=1, \quad \lambda_{2}=3
$$

(c) Compute the eigenvectors of $A^{T} A$.

Solution: Solve $\left(A^{T} A-\lambda I\right) \boldsymbol{v}=\mathbf{0}$ separately for $\lambda_{1}=3, \lambda_{2}=1$ and $\lambda_{3}=0$:
$\lambda_{1}=3:\left(A^{T} A-3 I\right) \boldsymbol{v}_{\mathbf{1}}=\left[\begin{array}{ccc}-2 & 1 & 0 \\ 1 & -1 & 1 \\ 0 & 1 & -2\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ yields an eigenvector
$\boldsymbol{v}_{1}=\left[\begin{array}{l}1 \\ 2 \\ 1\end{array}\right] \rightarrow\left[\begin{array}{l}1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right]$.
$\lambda_{2}=1:\left(A^{T} A-I\right) \boldsymbol{v}_{\mathbf{2}}=\left[\begin{array}{lll}0 & 1 & 0 \\ 1 & 1 & 1 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ yields an eigenvector
$\boldsymbol{v}_{2}=\left[\begin{array}{c}1 \\ 0 \\ -1\end{array}\right] \rightarrow\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2}\end{array}\right]$.
$\lambda_{3}=0:\left(A^{T} A-0 I\right) \boldsymbol{v}_{\mathbf{3}}=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 2 & 1 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}a \\ b \\ c\end{array}\right]=\left[\begin{array}{l}0 \\ 0 \\ 0\end{array}\right]$ yields an eigenvector
$\boldsymbol{v}_{\mathbf{3}}=\left[\begin{array}{c}1 \\ -1 \\ 1\end{array}\right] \rightarrow\left[\begin{array}{c}1 / \sqrt{3} \\ -1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right]$.
It's clear that $\boldsymbol{v}_{\mathbf{1}}, \boldsymbol{v}_{\mathbf{2}}$ and $\boldsymbol{v}_{\mathbf{3}}$ are linearly independent eigenvectors of $A^{T} A$.
(d) Compute the eigenvectors of $A A^{T}$.

Solution: The eigenvectors of $A A^{T}$ are the same as the left singular vectors \boldsymbol{u}_{1} and \boldsymbol{u}_{2}.
$u_{1}=\frac{1}{\sigma_{1}} A \boldsymbol{v}_{1}=\frac{1}{\sqrt{3}}\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{l}1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right]=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right]$
$u_{2}=\frac{1}{\sigma_{1}} A \boldsymbol{v}_{2}=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2}\end{array}\right]=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$
It's clear that $\boldsymbol{u}_{\mathbf{1}}$ and $\boldsymbol{u}_{\mathbf{2}}$ are linearly independent eigenvectors of $A A^{T}$.
(e) Find orthonormal bases for the four fundamental subspaces of A.

Solution: Combine (c) and (d), the following results can be showed.
For the column space, the orhomnormal bases are $\boldsymbol{u}_{\mathbf{1}}=\left[\begin{array}{l}1 / \sqrt{2} \\ 1 / \sqrt{2}\end{array}\right], \boldsymbol{u}_{\mathbf{2}}=\left[\begin{array}{c}1 / \sqrt{2} \\ -1 / \sqrt{2}\end{array}\right]$.
For the left nullspace, the only element in this space is $\mathbf{0}$.
For the row space, the orhomnormal bases are $\boldsymbol{v}_{\mathbf{1}}=\left[\begin{array}{l}1 / \sqrt{6} \\ 2 / \sqrt{6} \\ 1 / \sqrt{6}\end{array}\right], \boldsymbol{v}_{\mathbf{2}}=\left[\begin{array}{c}1 / \sqrt{2} \\ 0 \\ -1 / \sqrt{2}\end{array}\right]$.
For the nullspace, the orhomnormal bases is $\boldsymbol{v}_{\mathbf{3}}=\left[\begin{array}{c}1 / \sqrt{3} \\ -1 / \sqrt{3} \\ 1 / \sqrt{3}\end{array}\right]$.
(f) Write $A=U \Sigma V^{T}$.

Solution: Combine (b), (c) and (d), and set the following matrices.

$$
U=\left[\begin{array}{cc}
1 / \sqrt{2} & 1 / \sqrt{2} \\
1 / \sqrt{2} & -1 / \sqrt{2}
\end{array}\right], V=\left[\begin{array}{ccc}
1 / \sqrt{6} & 1 / \sqrt{2} & 1 / \sqrt{3} \\
2 / \sqrt{6} & 0 & -1 / \sqrt{3} \\
1 / \sqrt{6} & -1 / \sqrt{2} & 1 / \sqrt{3}
\end{array}\right] \text { and } \quad \Sigma=\left[\begin{array}{ccc}
\sqrt{3} & 0 & 0 \\
0 & 1 & 0
\end{array}\right]
$$

Thus $A=U \Sigma V^{T}=\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right]\left[\begin{array}{ccc}\sqrt{3} & 0 & 0 \\ 0 & 1 & 0\end{array}\right]\left[\begin{array}{ccc}1 / \sqrt{6} & 2 / \sqrt{6} & 1 / \sqrt{6} \\ 1 / \sqrt{2} & 0 & -1 / \sqrt{2} \\ 1 / \sqrt{3} & -1 / \sqrt{3} & 1 / \sqrt{3}\end{array}\right]=$ $\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 1 & 1\end{array}\right]$.

