Linear Algebra Cheat Sheet
 Inverse Matrix

Piping Lu
January 2024

1 Properties of Inverse Matrix

- $A A^{-1}=I, A^{-1} A=I$
- $\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$
- $(A B)^{-1}=B^{-1} A^{-1}$

Question 1 If A and M have inverse matrix A^{-1} and M^{-1} and
X, Y, Z are matrix!

- $A X=B \quad A^{-1}(A X)=A^{-1} B \quad \Rightarrow X=I X=A^{-1} B$
- $Y M=C \quad(Y M) M^{-1}=C M^{-1} \quad \Rightarrow Y=Y I=C M^{-1}$
- $A=M^{\top}=D \quad M^{\top}$ is invertible. $\quad\left(M^{\top}\right)^{-1}=\left(M^{-1}\right)^{\top}$
what is X, Y, Z ?

Elimination

$=A^{-1} \cdot D \cdot\left(M^{\top}\right)^{-1} \cdot A^{-1} D\left(M^{-1}\right)^{\top}$
Elimination as Matrix Operation We can write the operations to change
$!!!~$ equivalent linear system by $[A \mid b] \rightarrow\left[E_{\mathfrak{j} \boldsymbol{z}} A \mid E_{\mathfrak{j} \mathfrak{i}} b\right]$ and $\left[P_{i j} A \mid P_{i j} b\right]$.

- Elimination matrix $E_{i j}$:

$$
\begin{aligned}
& \text { - Replace row }(\boldsymbol{j}) \text { by } *^{*} \operatorname{row}(i)+\operatorname{row}(j) \leftarrow \quad\left[E_{j i} \mathbf{A} \mid E_{j i} b\right] \\
& \text { - Identity matrix except } a_{i j}=*
\end{aligned}
$$

$$
\left[\begin{array}{cccc}
1 & & & \\
& \ddots & & \\
& a_{i i}^{*} & & \\
& & & \ddots \\
& & & \\
1
\end{array}\right]
$$

- Permutation matrix $P_{i j}$:
- Swtich Row (i) with Row $(j) \leftarrow\left[P_{i j} A \mid P_{i j} b\right]$
- Identity matrix except $a_{i j}=a_{j i}=1, a_{i i}=a_{j j}=0$

Question 2 What is the matrix after the following operations

- Change Row 2 of A to Row $2+2^{*}$ Row 1
$E_{21}^{-1}=\left[\begin{array}{llll}1 & & & \\ -2 & 1 & & \\ & & \ddots & \\ & & & 1\end{array}\right]$
- Switch Row 3 and Row 4 of the new matrix
- Change Row 4 of the new matrix to Row $4+$

ex. $E_{32}^{(2)} E_{31}^{(2)} E_{21}^{(1)} A$

1. Pperate E E font
2. Thin operate
3. Find Operant in

3 Inverse Matrix

- The inverse of a matrix exists if and only if the matrix is a square matrix and all column vectors are linear independent.
- The inverse of a matrix exists if and only if elimination produced n nonzero pivots.

Questions (answer is in the slide) Can you describe how the upper triangular form and their pivots look like for the following three cases

- The linear system have a single solution
- The linear system have no solution
- The linear system have infinite solutions

Questions Please ensure you know the answer of the following questions

- How to calculate the inverse of a matrix?
- What is the inverse of the elimination matrix? What is the inverse of the permutation matrix?

Single Solution. n non-zero pivot

$$
\left[\begin{array}{cccc|c}
* & x & \cdots & x & x \\
& * & & x & x \\
& \ddots & & \\
& & & * & x
\end{array}\right] \quad \begin{aligned}
& \text { *: non-zero } \\
& x: \text { any nuentor }
\end{aligned}
$$

(2) N_{0}

Solution
pivot is tero $\rightarrow\left[0 \ldots .0 \mid \Delta \& \Delta\right.$: non-zero value $\quad 0 x_{1}+\cdots+0 x_{n}=\Delta$, not possible!!
(3) Infinite Solution

1. have a row 0.... o lo

$$
\begin{aligned}
& \text { 2. all the Dow. whose left part is all zero } 0 \cdots \text { a } \\
& \text { the right part is also } 0!!!
\end{aligned}
$$

LU Decomposition!

$$
A=L^{L} \cdot u \leqslant \text { upper Trainulas }
$$

LD U Decomposition

$$
\begin{aligned}
A= & L \stackrel{L}{ } \stackrel{D}{ } U^{\ell} \begin{array}{l}
\text { upper Treingular } \\
\text { but all I on } \\
\text { the ding }
\end{array} \\
& \text { Lower Trairgaber } \\
& \text { but all I on } \\
& \text { +he dig g }
\end{aligned}
$$

if A is symmetric

$$
A=L \cdot D \cdot L^{\top}
$$

(LDL devapoition)

1. LDU. CDL are Unique!!
2. LU U is not unique.

$$
A=L_{1} U_{1}=L_{2} U_{2}
$$

Then $L_{1}=L_{3} \cdot{ }_{D}^{\lambda^{\text {did }}}(!)$

$$
L_{2}^{-1} L_{1} U_{1} W_{1}^{1}=L_{2}^{1} L_{2} U_{2} U_{2}^{-1}
$$

Let's assure $A=L_{1} U_{1}=L_{2} \cdot U_{2}$

$$
\begin{aligned}
& L_{2}^{-1} \cdot L_{1}=D=U_{2} \cdot U_{1}^{-1} \\
& L_{1}=L_{2} \cdot D \quad L_{2}\left(L_{2}^{-1} L_{1}\right)=L_{2} \cdot D
\end{aligned}
$$

$$
u_{2}=D \cdot u_{1}
$$

$U^{\uparrow} T \rightarrow L_{2}^{-1} \cdot L_{1}$ or $U_{2} \cdot U_{1}^{-1}$ are both L.T. and U.T. meows. They are dig !!!
of diag of L_{2}. and L_{1} are 1 . the my D is identify hint!! $\quad L_{1}=L_{2} \cdot D$
$\Rightarrow\left(L_{1}\right)_{11}=\left(L_{2}\right)_{11} \cdot d_{11} \Rightarrow d_{11}=1 \Rightarrow D$ is identity!!

