Linear Algebra

Lecture 5
 Inverse Matrices

Dr. Yiping Lu

Strang Sections 2.5 - Inverse Matrices

Course notes adapted from Introduction to Linear Algebra by Strang (5th ed), N. Hammoud's NYU lecture notes, and Interactive Linear Algebra by

Margalit and Rabinoff, in addition to our text

The Idea of Inverse Matrices

The idea of Inverse Matrices

Suppose A is an $n \times n$ matrix (square matrix), then A is invertible if there exists a matrix A^{-1} such that

$$
A A^{-1}=I \quad \text { and } \quad A^{-1} A=I .
$$

We can only talk about an inverse of a square matrix, but not all square matrices are invertible. We will discuss such restrictions in future lectures.

The idea of Inverse Matrices

Recall: The multiplicative inverse (or reciprocal) of a nonzero number a is the number b such that $a b=1$. We define the inverse of a matrix in almost the same way.

Definition

Let A be an $n \times n$ square matrix. We say A is invertible (or nonsingular) if there is a matrix B of the same size, such that

$$
A B=I_{n} \quad \text { and } \quad B A=I_{n} .<\left(\begin{array}{cccc}
1 & 0 & \cdots & 0 \\
0 & 1 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots \\
0 & 0 & \cdots & 1
\end{array}\right)
$$

Example

$$
A=\left(\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right) \quad B=\left(\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right)
$$

I claim $B=A^{-1}$. Check:

Properties of Inverses

Inverse of a Product

Theorem: If A and B are invertible, then $A B$ is invertible, with

$$
(A B)^{-1}=B^{-1} A^{-1}
$$

Inverse of the sum of Matrices

In general, even if both A and B are invertible matrices of the same size, the matrix $(A+B)$ is not necessarily invertible.

Inverse of a Diagonal Matrix

Let $D=\left[\begin{array}{cccc}d_{11} & & & \\ & d_{22} & & \\ & & \ddots & \\ & & & d_{n n}\end{array}\right]$ be an $n \times n$ diagonal matrix, then

$$
D^{-1}=\left[\begin{array}{cccc}
1 / d_{11} & & & \\
& 1 / d_{22} & & \\
& & \ddots & \\
& & & 1 / d_{n n}
\end{array}\right] \text { provided that } d_{i i} \neq 0
$$

Inverse of an Elimination Matrix

Consider the elimination matrix

$$
E_{31}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
c & 0 & 1 & \ldots & 0 \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

which adds c copies of the first row to the third row. Then,

$$
E_{31}^{-1}=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
-c & 0 & 1 & \ldots & 0 \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

Goal

Inverse of a Permutation Matrix

The inverse of a permutation matrix is its transpose.

$$
\begin{aligned}
& P_{34}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \Longrightarrow P_{34}^{-1}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right] \\
& P=\left[\begin{array}{llll}
0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 \\
1 & 0 & 0 & 0
\end{array}\right] \Longrightarrow P^{-1}=\left[\begin{array}{llll}
0 & 0 & 0 & 1 \\
0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 \\
0 & 0 & 1 & 0
\end{array}\right]
\end{aligned}
$$

More on the Transpose of a Matrix

The transpose of an $m \times n$ matrix A is denoted by A^{T}, and it has entries $a_{i j}^{T}=a_{j i}$. That is, the columns of A^{T} are the rows of A.

Properties of the Transpose

sum: $\quad(A+B)^{T}=A^{T}+B^{T}$
product: $\quad(A B)^{T}=B^{T} A^{T}$
inverse: $\quad\left(A^{T}\right)^{-1}=\left(A^{-1}\right)^{T}$

Strang Sections 2.6-Elimination = Factorization: $A=L U$ and 2.7 - Transposes and Permutations

Course notes adapted from Introduction to Linear Algebra by Strang (5 ${ }^{\text {th }} \mathbf{e d) , ~}$ N. Hammoud's NYU lecture notes, and Interactive Linear Algebra by

Margalit and Rabinoff, in addition to our text

Goal

Computing $U-2 \times 2$ case

We will start with a 2×2 matrix, then a 3×3 matrix, and then generalize to the $n \times n$ case.

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \xrightarrow{\text { goal }} U=\left[\begin{array}{ll}
b & c \\
0 & d
\end{array}\right]
$$

If $a_{11} \neq 0$, then it is a pivot and we use it to eliminate a_{21}.

Computing $U-2 \times 2$ case

We will start with a 2×2 matrix, then a 3×3 matrix, and then generalize to the $n \times n$ case.

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \xrightarrow{\text { goal }} \quad U=\left[\begin{array}{ll}
b & c \\
0 & d
\end{array}\right]
$$

If $a_{11} \neq 0$, then it is a pivot and we use it to eliminate a_{21}.

$$
E_{21} A=\left[\begin{array}{cc}
1 & 0 \\
-\frac{a_{21}}{a_{11}} & 1
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{22}-\frac{a_{21}}{a_{11}} a_{12}
\end{array}\right]
$$

Computing $U-2 \times 2$ case

We will start with a 2×2 matrix, then a 3×3 matrix, and then generalize to the $n \times n$ case.

$$
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right] \xrightarrow{\text { goal }} \quad U=\left[\begin{array}{ll}
b & c \\
0 & d
\end{array}\right]
$$

If $a_{11} \neq 0$, then it is a pivot and we use it to eliminate a_{21}.

$$
E_{21} A=\left[\begin{array}{cc}
1 & 0 \\
-\frac{a_{21}}{a_{11}} & 1
\end{array}\right]\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]=\left[\begin{array}{cc}
a_{11} & a_{12} \\
0 & a_{22}-\frac{a_{21}}{a_{11}} a_{12}
\end{array}\right]
$$

If $a_{11}=0$, but $a_{21} \neq 0$, we have to permute first. If both a_{11} and a_{21} are zero, then the matrix is already upper triangular.

Computing $U-3 \times 3$ case

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \xrightarrow{\text { goal }} U=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & b & c \\
0 & 0 & f
\end{array}\right]
$$

If $a_{11} \neq 0$, then we make it first pivot and use it to eliminate a_{21} and a_{31}.

Computing $\mathrm{U}-3 \times 3$ case

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \xrightarrow{\text { goal }} U=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & b & c \\
0 & 0 & f
\end{array}\right]
$$

If $a_{11} \neq 0$, then we make it first pivot and use it to eliminate a_{21} and a_{31}.

$$
E_{21} A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
-\frac{a_{21}}{a_{11}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & b & c \\
a_{31} & a_{32} & a_{33}
\end{array}\right]
$$

Computing $\mathrm{U}-3 \times 3$ case

$$
A=\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \xrightarrow{\text { goal }} U=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & b & c \\
0 & 0 & f
\end{array}\right]
$$

If $a_{11} \neq 0$, then we make it first pivot and use it to eliminate a_{21} and a_{31}.

$$
\begin{aligned}
& E_{21} A=\left[\begin{array}{cll}
1 & 0 & 0 \\
-\frac{a_{21}}{a_{11}} & 1 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & b & c \\
a_{31} & a_{32} & a_{33}
\end{array}\right] \\
& E_{31} E_{21} A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
-\frac{a_{31}}{a_{11}} & 0 & 1
\end{array}\right]\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & b & c \\
a_{31} & a_{32} & a_{33}
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & b & c \\
0 & d & e
\end{array}\right]
\end{aligned}
$$

Computing $U-3 \times 3$ case

If $a_{11} \neq 0$, then we make it first pivot and use it to eliminate a_{21} and a_{31}.
$E_{31} E_{21} A=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{a_{31}}{a_{11}} & 0 & 1\end{array}\right]\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & b & c \\ a_{31} & a_{32} & a_{33}\end{array}\right]=\left[\begin{array}{ccc}a_{11} & a_{12} & a_{13} \\ 0 & b & c \\ 0 & d & e\end{array}\right]$
If $b \neq 0$, then we make it second pivot and use it to eliminate d.

$$
E_{32} E_{31} E_{21} A=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & -\frac{d}{b} & 1
\end{array}\right]\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & b & c \\
0 & d & e
\end{array}\right]=\left[\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
0 & b & c \\
0 & 0 & f
\end{array}\right]
$$

Computing U - General Case

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & & & & \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right] \xrightarrow{\text { goal }} U=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & b & c & \ldots & d \\
0 & 0 & e & \ldots & f \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \ldots & g
\end{array}\right]
$$

Computing U - General Case

$$
A=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
a_{21} & a_{22} & a_{23} & \ldots & a_{2 n} \\
a_{31} & a_{32} & a_{33} & \ldots & a_{3 n} \\
\vdots & & & & \\
a_{n 1} & a_{n 2} & a_{n 3} & \ldots & a_{n n}
\end{array}\right] \xrightarrow{\text { goal }} U=\left[\begin{array}{ccccc}
a_{11} & a_{12} & a_{13} & \ldots & a_{1 n} \\
0 & b & c & \ldots & d \\
0 & 0 & e & \ldots & f \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \ldots & g
\end{array}\right]
$$

e pivot $\longrightarrow E_{43} C \rightarrow E_{53} E_{43} C \rightarrow E_{63} E_{53} E_{43} C \rightarrow E_{n 3} \ldots E_{63} E_{53} E_{43} C$
note that we're assuming we can find a pivot without having to use permutations

Computing \mathbf{L}
2×2 case:

$$
\text { If } \begin{gathered}
A=\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right], \text { then } U=E_{21} A . \\
\\
\Longrightarrow A=A=E_{21}^{-1} U \\
L
\end{gathered}
$$

3×3 case: \quad If $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then $U=E_{32} E_{31} E_{21} A$.

$$
\begin{aligned}
\Longrightarrow A & =\left(E_{32} E_{31} E_{21}\right)^{-1} U \\
& =E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} U
\end{aligned}
$$

Goal

Questions?

