Lecture 4
 Matrix Operations

Yiping Lu

Based on Dr. Ralph Chikhany's Slide

Reminders

- Get access to Gradescope, Campuswire.
- Obtain the textbook.
- Problem Set 1 due by 11.59 pm on Friday (NY time).
\checkmark Late work policy applies.
- Recap Quiz 2 due by 11.59 pm on Sunday (NY time).
* Late work policy does not apply.
- Recap Quiz is timed.

Once you start, you have 60 minutes to finish it (even if you close the tab)

Recap

In general, n vectors $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$ are linearly dependent if

$$
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}=\overrightarrow{0}
$$

for scalars $c_{1}, c_{2}, \ldots, c_{n}$ not all zero.

Example: $v_{1}=(1,-1,0), v_{2}=(-2,2,0), v_{3}=(0,0,1)$

Recap

Linear system $A x=b$

- have solution if and only if $b \in \operatorname{span}\left\{c_{1}, \cdots, c_{n}\right\}$ where c_{1}, \cdots, c_{n} are column vectors of matrix A
- have a unique solution if and only if matrix A have an inverse matrix A^{-1}. The unique solution is $x=A^{-1} b$. In this case, A must be a square matrix and c_{1}, \cdots, c_{n} are linear independent.

Recap

Linear system $A x=b$

- have solution if and only if $b \in \operatorname{span}\left\{c_{1}, \cdots, c_{n}\right\}$ where c_{1}, \cdots, c_{n} are column vectors of matrix A
- have a unique solution if and only if matrix A have an inverse matrix A^{-1}. The unique solution is $x=A^{-1} b$. In this case, A must be a square matrix and c_{1}, \cdots, c_{n} are linear independent.

Strang Sections 2.3 - Elimination Using Matrices and 2.4 - Rules for Matrix Operations

Course notes adapted from Introduction to Linear Algebra by Strang (5 ${ }^{\text {th }} \mathbf{e d) , ~}$ N. Hammoud's NYU lecture notes, and Interactive Linear Algebra by

Margalit and Rabinoff, in addition to our text

Permutation Matrices

$$
I=\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \ldots & 1
\end{array}\right] \xrightarrow{ } \quad \vec{x} \quad\left[\begin{array}{ccccc}
1 & 0 & 0 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
0 & 0 & 1 & \ldots & 0 \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Permutation Matrices

$$
P_{i j}=\left[\begin{array}{cccccccc}
1 & 0 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
\vdots & & & & & & & \\
0 & 0 & \ldots & 0 & \ldots & 1 & \ldots & 0 \\
\vdots & & & & & & & \\
0 & 0 & \ldots & 1 & \ldots & 0 & \ldots & 0 \\
\vdots & & & & & & & \\
0 & 0 & \ldots & 0 & \ldots & 0 & \ldots & 1
\end{array}\right]
$$

$\left.P_{i j}\left[\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{i} \\ \vdots \\ x_{j} \\ \vdots \\ x_{n}\end{array}\right] \stackrel{[}{x_{1}} \begin{array}{c}x_{2} \\ \vdots \\ x_{j} \\ \vdots \\ x_{i} \\ \vdots \\ x_{n}\end{array}\right]$

Permutation Matrices

$$
P_{i j}=\left[\begin{array}{cccccccc}
1 & 0 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
\vdots & & & & & & & \\
0 & 0 & \ldots & 0 & \ldots & 1 & \ldots & 0 \\
\vdots & & & & & & & \\
0 & 0 & \ldots & 1 & \ldots & 0 & \ldots & 0 \\
\vdots & & & & & & & \\
0 & 0 & \ldots & 0 & \ldots & 0 & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
x_{i j} \\
x_{2} \\
\vdots \\
x_{i} \\
\vdots \\
x_{j} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{j} \\
\vdots \\
x_{i} \\
\vdots \\
x_{n}
\end{array}\right]
$$

$$
P_{31}=\left[\begin{array}{ccccc}
0 & 0 & 1 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0 \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]
$$

Permutation Matrices

$$
P_{i j}=\left[\begin{array}{cccccccc}
1 & 0 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
0 & 1 & \ldots & 0 & \ldots & 0 & \ldots & 0 \\
\vdots & & & & & & & \\
0 & 0 & \ldots & 0 & \ldots & 1 & \ldots & 0 \\
\vdots & & & & & & & \\
0 & 0 & \ldots & 1 & \ldots & 0 & \ldots & 0 \\
\vdots & & & & & & & \\
0 & 0 & \ldots & 0 & \ldots & 0 & \ldots & 1
\end{array}\right]
$$

$$
P_{31}=\left[\begin{array}{ccccc}
0 & 0 & 1 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0 \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \ldots & 1
\end{array}\right] \xrightarrow{P_{31} \vec{x}}\left[\begin{array}{ccccc}
0 & 0 & 1 & \ldots & 0 \\
0 & 1 & 0 & \ldots & 0 \\
1 & 0 & 0 & \ldots & 0 \\
\vdots & & & \ddots & \\
0 & 0 & 0 & \ldots & 1
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
x_{3} \\
\vdots \\
x_{n}
\end{array}\right]
$$

Matrix Operations

Recall

Let A be an $m \times n$ matrix.
We write $a_{i j}$ for the entry in the i th row and the j th column. It is called the $i j$ th entry of the matrix.

$$
\left(\begin{array}{cc|ccc}
a_{11} & \cdots & a_{1 j} & \cdots & a_{1 n} \\
\vdots & & \vdots & & \vdots \\
\hline a_{i 1} & \cdots & a_{i j} & \cdots & a_{i n} \\
\vdots & & \vdots & & \vdots \\
a_{m 1} & \cdots & a_{m j} & \cdots & a_{m n}
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)\left(\begin{array}{cc}
\sqrt[a]{a_{11}} & a_{12} \\
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right)
$$

$$
\left(\begin{array}{ccc}
a_{11} & 0 & 0 \\
0 & a_{22} & 0 \\
0 & 0 & a_{33}
\end{array}\right)
$$

$$
I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right)
$$

Recall

The zero matrix (of size $m \times n$) is the $m \times n$ matrix 0 with all zero entries.

$$
\left.\begin{array}{c}
0=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right) \\
A \\
\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{21} & a_{13} \\
a_{21} & a_{22}
\end{array} a_{23}\right.
\end{array}\right) \text { mun } \stackrel{A^{T}}{\substack{\text { flip }}}\left(\begin{array}{cc}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right) .
$$

The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^{T} whose rows are the columns of A. In other words, the $i j$ entry of A^{T} is $a_{j i}$.

Matrix Addition and Scalar Multiplication

You add two matrices component by component, like with vectors.

$$
\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)+\left(\begin{array}{lll}
b_{11} & b_{12} & b_{13} \\
b_{21} & b_{22} & b_{23}
\end{array}\right)=\left(\begin{array}{lll}
a_{11}+b_{11} & a_{12}+b_{12} & a_{13}+b_{13} \\
a_{21}+b_{21} & a_{22}+b_{22} & a_{23}+b_{23}
\end{array}\right)
$$

Note you can only add two matrices of the same size.
You multiply a matrix by a scalar by multiplying each component, like with vectors.

$$
c\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)=\left(\begin{array}{lll}
c a_{11} & c a_{12} & c a_{13} \\
c a_{21} & c a_{22} & c a_{23}
\end{array}\right) .
$$

These satisfy the expected rules, like with vectors:

$$
\begin{aligned}
A+B & =B+A & (A+B)+C & =A+(B+C) \\
c(A+B) & =c A+c B & (c+d) A & =c A+d A \\
(c d) A & =c(d A) & A+0 & =A
\end{aligned}
$$

Matrix Multiplication

$$
A=\left[\begin{array}{ccc}
a_{11} & \ldots & a_{1 n} \\
a_{21} & \ldots & a_{2 n} \\
\vdots & & \\
a_{m 1} & \ldots & a_{m n}
\end{array}\right] \quad B=\left[\begin{array}{ccc}
b_{11} & \ldots & b_{1 m} \\
b_{21} & \ldots & b_{2 m} \\
\vdots & & \\
b_{l 1} & \ldots & b_{l m}
\end{array}\right] \quad C=\left[\begin{array}{ccc}
c_{11} & \ldots & c_{1 k} \\
c_{21} & \ldots & c_{2 k} \\
\vdots & & \\
c_{n 1} & \ldots & c_{n k}
\end{array}\right]
$$

Matrix Multiplication

Beware: matrix multiplication is more subtle than addition and scalar multiplication.
Let A be an $m \times \stackrel{\downarrow}{n}$ matrix and let B be an $\stackrel{\downarrow}{n} \times p$ matrix with columns $v_{1}, v_{2} \ldots, v_{p}$:

$$
B=\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
v_{1} & v_{2} & \cdots & v_{p} \\
\mid & \mid & & \mid
\end{array}\right)
$$

The product $A B$ is the $m \times p$ matrix with columns $A v_{1}, A v_{2}, \ldots, A v_{p}$:

$$
\begin{array}{cc}
\text { The equality is } & A B \stackrel{\text { def }}{=}\left(\begin{array}{cccc}
\mid & \mid & & \mid \\
A v_{1} & A v_{2} & \cdots & A v_{p} \\
\mid & \mid & & \mid
\end{array}\right) \text { definition }
\end{array}
$$

In order for $A v_{1}, A v_{2}, \ldots, A v_{p}$ to make sense, the number of columns of A has to be the same as the number of rows of B.

Example

$$
\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{ll}
1 & -3 \\
2 & -2 \\
3 & -1
\end{array}\right)=\left(\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \cdot\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \quad\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \cdot\left(\begin{array}{l}
-3 \\
-2 \\
-1
\end{array}\right)\right)
$$

Matrix Multiplication

A row vector of length n times a column vector of length n is a scalar:

$$
\left(\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)=a_{1} b_{1}+\cdots+a_{n} b_{n} .
$$

Matrix Multiplication

A row vector of length n times a column vector of length n is a scalar:

$$
\left(\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)=a_{1} b_{1}+\cdots+a_{n} b_{n} .
$$

Another way of multiplying a matrix by a vector is:

$$
A x=\left(\begin{array}{c}
-r_{1}- \\
\vdots \\
-r_{m}-
\end{array}\right) x=\left(\begin{array}{c}
r_{1} x \\
\vdots \\
r_{m} x
\end{array}\right) .
$$

Matrix Multiplication

A row vector of length n times a column vector of length n is a scalar:

$$
\left(\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)=a_{1} b_{1}+\cdots+a_{n} b_{n} .
$$

Another way of multiplying a matrix by a vector is:

$$
A x=\left(\begin{array}{c}
-r_{1}- \\
\vdots \\
-r_{m}-
\end{array}\right) x=\left(\begin{array}{c}
r_{1} x \\
\vdots \\
r_{m} x
\end{array}\right) .
$$

On the other hand, you multiply two matrices by

$$
A B=A\left(\begin{array}{ccc}
\mid & & \mid \\
c_{1} & \cdots & c_{p} \\
\mid & & \mid
\end{array}\right)=\left(\begin{array}{ccc}
\mid & & \mid \\
A c_{1} & \cdots & A c_{p} \\
\mid & & \mid
\end{array}\right) .
$$

Matrix Multiplication

A row vector of length n times a column vector of length n is a scalar:

$$
\left(\begin{array}{lll}
a_{1} & \cdots & a_{n}
\end{array}\right)\left(\begin{array}{c}
b_{1} \\
\vdots \\
b_{n}
\end{array}\right)=a_{1} b_{1}+\cdots+a_{n} b_{n} .
$$

Another way of multiplying a matrix by a vector is:

$$
A x=\left(\begin{array}{c}
-r_{1}- \\
\vdots \\
-r_{m}-
\end{array}\right) x=\left(\begin{array}{c}
r_{1} x \\
\vdots \\
r_{m} x
\end{array}\right) .
$$

On the other hand, you multiply two matrices by

$$
A B=A\left(\begin{array}{ccc}
\mid & & \mid \\
c_{1} & \cdots & c_{p} \\
\mid & & \mid
\end{array}\right)=\left(\begin{array}{ccc}
\mid & & \mid \\
A c_{1} & \cdots & A c_{p} \\
\mid & & \mid
\end{array}\right) .
$$

It follows that

$$
A B=\left(\begin{array}{c}
-r_{1}- \\
\vdots \\
-r_{m}-
\end{array}\right)\left(\begin{array}{c}
\mid \\
c_{1} \\
\mid
\end{array} \cdots \quad c_{p}\right)=\left(\begin{array}{cccc}
r_{1} c_{1} & r_{1} c_{2} & \cdots & r_{1} c_{p} \\
r_{2} c_{1} & r_{2} c_{2} & \cdots & r_{2} c_{p} \\
\vdots & & & \\
\vdots & & & \vdots \\
r_{m} c_{1} & r_{m} c_{2} & \cdots & r_{m} c_{p}
\end{array}\right)
$$

Matrix Multiplication

The $i j$ entry of $C=A B$ is the i th row of A times the j th column of B :

$$
c_{i j}=(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j} .
$$

This is how everybody on the planet actually computes $A B$. Diagram $(A B=C)$:

Matrix Multiplication

The $i j$ entry of $C=A B$ is the i th row of A times the j th column of B :

$$
c_{i j}=(A B)_{i j}=a_{i 1} b_{1 j}+a_{i 2} b_{2 j}+\cdots+a_{i n} b_{n j} .
$$

This is how everybody on the planet actually computes $A B$. Diagram $(A B=C)$:

Example

$$
\begin{aligned}
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{ll}
1 & -3 \\
2 & -2 \\
3 & -1
\end{array}\right)=\left(\begin{array}{cc}
1 \cdot 1+2 \cdot 2+3 \cdot 3 & \square \\
\square & \square
\end{array}\right)=\left(\begin{array}{ll}
14 & \square \\
\square & \square
\end{array}\right) \\
& \left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)\left(\begin{array}{ll}
1 & -3 \\
2 & -2 \\
3 & -1
\end{array}\right)=\left(\begin{array}{cc}
\square & \square \\
4 \cdot 1+5 \cdot 2+6 \cdot 3 & \square
\end{array}\right)=\left(\begin{array}{ll}
\square & \square \\
32 & \square
\end{array}\right)
\end{aligned}
$$

Matrix-Matrix and Matrix-Vector

Matrix vector multiplication is a Matrix Matrix multiplication

$$
A\left[\vec{v}_{1}, \cdots, \vec{v}_{k}\right]=\left[A \vec{v}_{1}, \cdots, A \vec{v}_{k}\right]
$$

$$
\left[\begin{array}{c}
\vec{r}_{1}^{\top} \\
\vec{r}_{2}^{\top} \\
\cdots \\
\vec{r}_{k}^{\top}
\end{array}\right] \quad A=\left[\begin{array}{c}
\vec{r}_{1}^{\top} A \\
\vec{r}_{2}^{\top} A \\
\cdots \\
\vec{r}_{k}^{\top} A
\end{array}\right]
$$

Matrix Multiplication

Let $A=\left[\begin{array}{rrrr}1 & 2 & 5 & 3 \\ 3 & -1 & 0 & -3 \\ 2 & -2 & 1 & 0\end{array}\right]$ and $B=\left[\begin{array}{rrr}2 & 0 & 1 \\ -1 & 1 & 0 \\ 4 & 1 & 3 \\ 0 & -2 & 1\end{array}\right]$.
Compute $A B$ and $B A$ (if possible).

Matrix Multiplication

Mostly matrix multiplication works like you'd expect. Suppose A has size $m \times n$, and that the other matrices below have the right size to make multiplication work.

$$
\begin{aligned}
A(B C) & =(A B) C \\
(B+C) A & =B A+C A \\
c(A B) & =A(c B) \\
A I_{m} & =A
\end{aligned}
$$

Most of these are easy to verify.

Matrix Multiplication

Warnings!

- $A B$ is usually not equal to $B A$.

In fact, $A B$ may be defined when $B A$ is not.

- $A B=A C$ does not imply $B=C$, even if $A \neq 0$.
- $A B=0$ does not imply $A=0$ or $B=0$.

Systems of Equations

Systems of Equations

What does the solution set of a linear equation look like?

- $x+y=1$
unn a line in the plane: $y=1-x$
- $x+y+z=1$
un \rightarrow a plane in space: $z=1-x-y$
- $x+y+z+w=1$

[not pictured here] nun a " 3 -plane" in " 4 -space"...

Systems of Equations

What does the solution set of a system of more than one linear equation look like?

$$
\begin{aligned}
& x-3 y=-3 \\
& 2 x+y=8
\end{aligned}
$$

... is the intersection of two lines, which is a point in this case.

In general it's an intersection of lines, planes, etc.

Systems of Equations

In what other ways can two lines intersect?

$$
\begin{aligned}
& x-3 y=-3 \\
& x-3 y=3
\end{aligned}
$$

has no solution: the lines are parallel.

A system of equations with no solutions is called inconsistent.

Systems of Equations

In what other ways can two lines intersect?

$$
\begin{aligned}
x-3 y & =-3 \\
2 x-6 y & =-6
\end{aligned}
$$

has infinitely many solutions:
they are the same line.

Note that multiplying an equation by a nonzero number gives the same solution set. In other words, they are equivalent (systems of) equations.

Systems of Equations

Example

Solve the system of equations

$$
\begin{aligned}
x+2 y+3 z & =6 \\
2 x-3 y+2 z & =14 \\
3 x+y-z & =-2
\end{aligned}
$$

This is the kind of problem we'll talk about for a good portion of the course.

- A solution is a list of numbers x, y, z, \ldots that make all of the equations true.
- The solution set is the collection of all solutions.
- Solving the system means finding the solution set.

Systems of Equations

Consider the following system of two equations in two unknowns

$$
\begin{aligned}
x_{1}-2 x_{2} & =1 \\
3 x_{1}+2 x_{2} & =11
\end{aligned}
$$

This system could be expressed in matrix notation as:

$$
\left[\begin{array}{rr}
1 & -2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
11
\end{array}\right]
$$

Systems of Equations - 2D - Row vs. Column Picture

$$
\left[\begin{array}{rr}
1 & -2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
11
\end{array}\right]
$$

Row picture:

$$
\begin{array}{ll}
(1,-2) \cdot\left(x_{1}, x_{2}\right)=1 & \Longrightarrow x_{1}-2 x_{2}=1 \\
(3,2) \cdot\left(x_{1}, x_{2}\right)=11 & \Longrightarrow 3 x_{1}+2 x_{2}=11
\end{array}
$$

Systems of Equations - 2D - Row vs. Column Picture

$$
\left[\begin{array}{rr}
1 & -2 \\
3 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{c}
1 \\
11
\end{array}\right]
$$

Column picture: $\quad x_{1}\left[\begin{array}{l}1 \\ 3\end{array}\right]+x_{2}\left[\begin{array}{r}-2 \\ 2\end{array}\right]=\left[\begin{array}{r}1 \\ 11\end{array}\right]$

Systems of Equations - 3D - Row vs. Column Picture

If we have three equations with three unknowns, it is still possible to draw a picture of what a solution looks like. Each of the three equations represents a plane in 3D, and their intersection gives the solution of the system. As soon as you go above 3D, visualization becomes impossible.

Consider the following system of three equations in three unknowns

$$
\begin{array}{r}
x_{1}+2 x_{2}+3 x_{3}=6 \\
2 x_{1}+5 x_{2}+2 x_{3}=4 \\
6 x_{1}-3 x_{2}+x_{3}=2
\end{array} \quad \Longrightarrow\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & 5 & 2 \\
6 & -3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
2
\end{array}\right]
$$

Systems of Equations - 3D - Row vs. Column Picture

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & 5 & 2 \\
6 & -3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
2
\end{array}\right]
$$

Row picture:

$$
\begin{array}{rlr}
(1,2,3) \cdot\left(x_{1}, x_{2}, x_{3}\right)=6 & \Longrightarrow x_{1}+2 x_{2}+3 x_{3}=6 \\
(2,5,2) \cdot\left(x_{1}, x_{2}, x_{3}\right)=4 & \Longrightarrow 2 x_{1}+5 x_{2}+2 x_{3}=4 \\
(6,-3,1) \cdot\left(x_{1}, x_{2}, x_{3}\right)=2 & \Longrightarrow 6 x_{1}-3 x_{2}+x_{3}=2
\end{array}
$$

Systems of Equations - 3D - Row vs. Column Picture

$$
\left[\begin{array}{rrr}
1 & 2 & 3 \\
2 & 5 & 2 \\
6 & -3 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
6 \\
4 \\
2
\end{array}\right]
$$

Column picture: $\quad x_{1}\left[\begin{array}{l}1 \\ 2 \\ 6\end{array}\right]+x_{2}\left[\begin{array}{r}2 \\ 5 \\ -3\end{array}\right]+x_{3}\left[\begin{array}{l}3 \\ 2 \\ 1\end{array}\right]=\left[\begin{array}{l}6 \\ 4 \\ 2\end{array}\right]$

