

Lecture 2 Spans and Matrices

Yiping Lu Based on Dr. Ralph Chikhany's Slide

Reminders

- Get access to Gradescope, Campuswire.
- Obtain the textbook.
- Problem Set 1 due by 11.59 pm on Friday (NY time). Next week
 ✓ Late work policy applies.
- Recap Quiz 1 due by 11.59 pm on Sunday (NY time). This Friday on Goodescape

 Late work policy does not apply.
- Recap Quiz is timed.
 - ☐ Once you start, you have 60 minutes to finish it (even if you close the tab)

Cheat Sheet

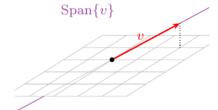
• Cheat Sheet overleaf: https://www.overleaf.com/read/jjbswyyqvzdx#8803d5

Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ be a set of vectors in \mathbb{R}^n . We define

 $\operatorname{span}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m\}=\operatorname{set}$ of all linear combinations of $\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m$

Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ be a set of vectors in \mathbb{R}^n . We define

 $\operatorname{span}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m\}=\operatorname{set}$ of all linear combinations of $\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m$

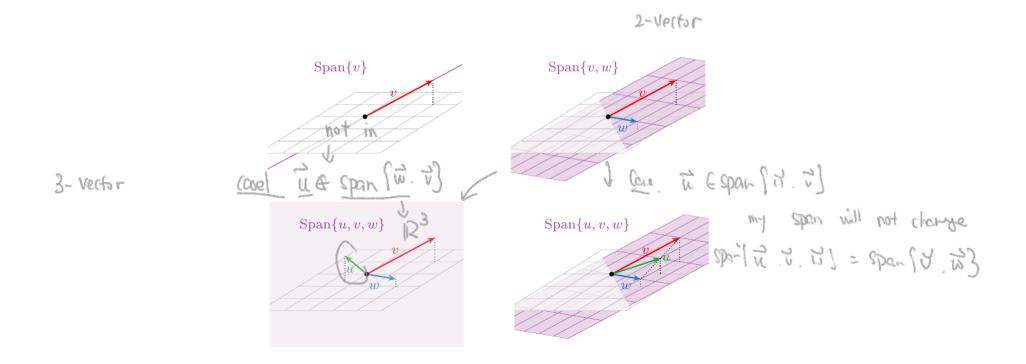


Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ be a set of vectors in \mathbb{R}^n . We define

 $\operatorname{span}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m\}=\text{set of all linear combinations of }\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m$ Then sport v. wil is a plane in IR? $\sum_{v \in Span} \{v, w\}_{v \in Span}$ $Span\{v\}$ e purple place fore is the span 8RA is alieur parallel with of spon () wi] = span () is still a line.

Let $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_m$ be a set of vectors in \mathbb{R}^n . We define

 $\mathrm{span}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m\} = \mathrm{set} \ \mathrm{of} \ \mathrm{all} \ \mathrm{linear} \ \mathrm{combinations} \ \mathrm{of} \ \vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m$



Strang Section 1.3 - Matrices

Course notes adapted from *Introduction to Linear Algebra* by Strang (5th ed), N. Hammoud's NYU lecture notes, and *Interactive Linear Algebra* by Margalit and Rabinoff, in addition to our text

Matrices

An $m \times n$ matrix A is a rectangular array of (real) numbers a_{ij} with m rows

m: # lows
n: # columns
$$A = \begin{bmatrix} a_1 & a_1 & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$
matrix as

A matrix is called **square** if it is
$$n \times n$$
, i.e., it has the same number of rows and columns.

spiere R'

Example
$$A = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix}$$
is 2×3 matrix
$$A \in \mathbb{R}^{2 \times 3}$$

$$A = \begin{pmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{pmatrix}$$

Matrices

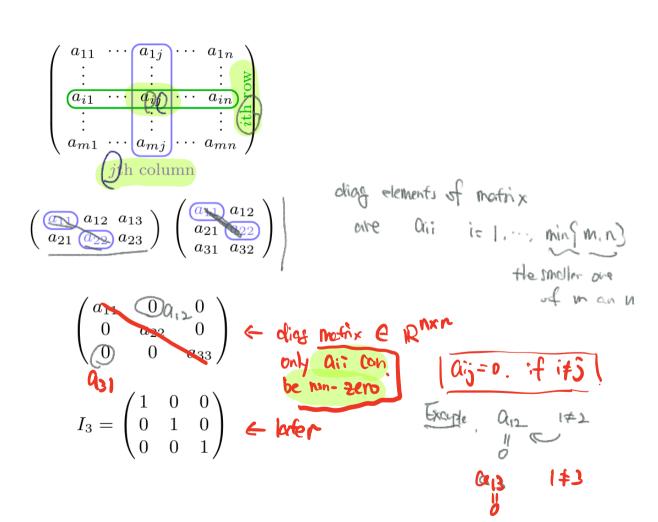
Let A be an $m \times n$ matrix.

We write a_{ij} for the entry in the *i*th row and the *j*th column. It is called the *ij*th entry of the matrix.

The entries $a_{11}, a_{22}, a_{33}, \ldots$ are the **diagonal entries**; they form the **main diagonal** of the matrix.

A diagonal matrix is a square matrix whose only nonzero entries are on the main diagonal.

The $n \times n$ identity matrix I_n is the diagonal matrix with all diagonal entries equal to 1. It is special because $I_n v = v$ for all v in \mathbf{R}^n .



Matrices

The **zero matrix** (of size $m \times n$) is the $m \times n$ matrix 0 with all zero entries.

The **transpose** of an
$$m \times n$$
 matrix A is the $n \times m$ matrix A^T whose rows are

The **transpose** of an $m \times n$ matrix A is the $n \times m$ matrix A^T whose rows are the columns of A. In other words, the ij entry of A^T is a_{ji} .

$$A = \begin{pmatrix} a_{12} & a_{13} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{22} & a_{23} & a_{24} \\ a_{23} & a_{24} & a_{24} \\ a_{24} & a_{25} & a_{25} \\ a_{25} & a_{25} \\ a_{25} & a_{25} \\ a_{25} & a_{25} \\ a_{25} & a_{2$$

$$0 = \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

Column vs. Row Representation of a Matrix

Column vs. Row Representation of a Matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \vdots & & & & & \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{bmatrix}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 & 5 & 6 \end{pmatrix} \in \mathbb{R}^{2 \times 3}$$

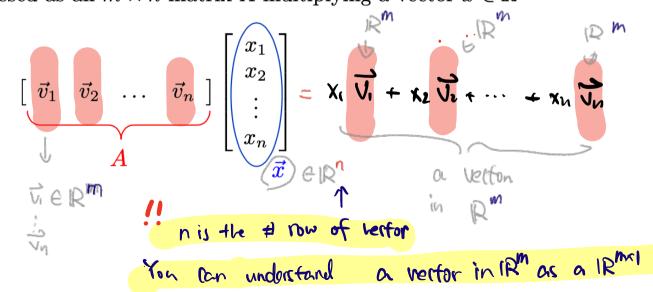
$$\bar{r}_{i} = \begin{pmatrix} 1 & 3 \\ 4 &$$

Linear Combination in Matrix Notation

A linear combination of n vectors, $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$, in \mathbb{R}^m is given by

$$x_1\vec{v}_1+x_2\vec{v}_2+\cdots+x_n\vec{v}_n \qquad \qquad \text{for all give}$$
 where $x_1,x_2,\ldots,x_n\in\mathbb{R}$. A $\in\mathbb{R}$ can only multiply with a vector $\vec{x}\in\mathbb{R}^n$

This can be expressed as an $m \times n$ matrix A multiplying a vector $\vec{x} \in \mathbb{R}^n$



{Ax | xelRn} gives me the span. Pool

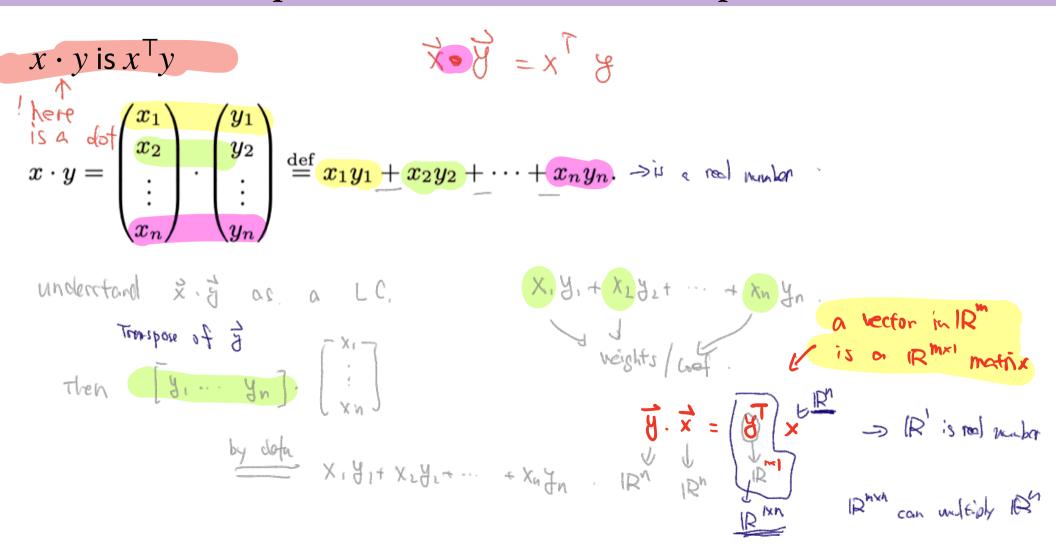
What is the size of matrix A

A= [V, Vo] Ax lie in the span of the column vectors of matrix A $\Delta x \in Span \{ \vec{v}_i \cdots \vec{v}_n \}$ Tes! is L.C. of Vi ... Vm

For all the vector \vec{v} in the span of the column vectors of matrix A, we can find a vector x, such that Ax = v

if
$$\vec{v}$$
 espan $(\vec{v}_1 \dots \vec{v}_n)$
can we find a vector \vec{x} s.t. $\Delta \vec{x} = \vec{v}$
 \vec{v} is L.C. of \vec{v} \vec{v}

Dot product as matrix vector multiplication



identity matrix

(2) Row

The $n \times n$ identity matrix I_n is the diagonal matrix with all diagonal entries equal to 1. It is special because

tries equal to 1. It is special because
$$I_n v = v$$
 for all v in \mathbf{R}^n .

$$I_n v = v$$
 for all v in \mathbf{R}^n .

$$\begin{array}{ccc}
T_3 & \xrightarrow{\chi} & \xrightarrow{\chi} \\
\begin{pmatrix} \chi_1 \\ \chi_2 \\ \chi_3 \\ \end{pmatrix}
\end{array}$$

$$\begin{array}{ccc}
T_3 & \xrightarrow{\chi} & \xrightarrow{\Sigma} & \xrightarrow{\chi} \\
(1) & & & & \\
(1) & & & & \\
(1) & & & & \\
(1) & & & & \\
(1) & & & & \\
(2) & & & & \\
(3) & & & & \\
(4) & & & & \\
(4) & & & & \\
(5) & & & & \\
(6) & & & & \\
(7) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & & \\
(8) & & & \\$$

 $I_3 \stackrel{\sim}{x} = x_1 \left[\begin{array}{c} 0 \\ 0 \\ \end{array} \right] + x_2 \left[\begin{array}{c} 1 \\ 0 \\ \end{array} \right] = \left[\begin{array}{c} x_1 \\ x_2 \\ \end{array} \right] = \stackrel{\sim}{x}$

Eall other are zero

$$I_{3}=\begin{pmatrix} \vec{v}_{1} & \vec{v}_{2} \\ \vec{v}_{1} & \vec{v}_{2} \end{pmatrix}$$

Linear Combination in Matrix Notation

Example: Let
$$A = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix}$$
, and $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}$. Compute $A\vec{x}$.

$$\frac{1}{\sqrt{1}} = \begin{bmatrix} -1 \\ -1 \\ -1 \end{bmatrix} \quad \frac{1}{\sqrt{1}} = \begin{bmatrix} 0 \\ 1 \\ -1 \end{bmatrix} \quad \frac{1}{\sqrt{2}} = \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix}$$

$$\frac{1}{2} = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \qquad \frac{1}{2} = \begin{bmatrix} -1 \\ 0 \end{bmatrix}$$

$$\vec{v}_1 = \begin{bmatrix} -1 \\ -1 \end{bmatrix} \quad \vec{v}_2 = \begin{bmatrix} 0 \\ -1 \end{bmatrix}$$

$$\vec{V}_3 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\vec{V}_4 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\vec{V}_5 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\vec{V}_7 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$\vec{V}_8 = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$$

$$= \frac{1}{x_{1} + 0. x_{1} + 0. x_{2}} + \frac{1}{x_{1}} = \frac{1}{x_{1} + 0. x_{2} + 0. x_{3}} = \frac{1}{x_{1} + 0. x_{2} + 0. x_{3}} = \frac{1}{x_{1} + 0. x_{2} + 0. x_{3}} = \frac{1}{x_{1} + 0. x_{2}} = \frac{1}{x_{1} + 0. x_{2}} = \frac{1}{x_{2} + x_{3}} = \frac{1}{x_{1} + 0. x_{2}} = \frac{1}{x_{2} + x_{3}} = \frac{1}{x_{1} + 0. x_{2}} = \frac{1}{x_{2} + x_{3}} = \frac{1}{x_{2} + x_{3}} = \frac{1}{x_{1} + 0. x_{2}} = \frac{1}{x_{2} + x_{3}} =$$

Dot Product with Rows

$$Ax = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} (1,0,0) \cdot (x_1, x_2, x_3) \\ (-1,1,0) \cdot (x_1, x_2, x_3) \\ (0,-1,1) \cdot (x_1, x_2, x_3) \end{bmatrix}.$$

$$Ax = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} (1,0,0) \cdot (x_1, x_2, x_3) \\ (-1,1,0) \cdot (x_1, x_2, x_3) \\ (0,-1,1) \cdot (x_1, x_2, x_3) \end{bmatrix}.$$

$$Ax = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} (1,0,0) \cdot (x_1, x_2, x_3) \\ (-1,1,0) \cdot (x_1, x_2, x_3) \\ (0,-1,1) \cdot (x_1, x_2, x_3) \end{bmatrix}.$$

Matrix times vector

Matrix times vector
$$Ax = \begin{bmatrix} \vec{v}_1 & \vec{v}_2 & \vec{v}_3 \end{bmatrix} \begin{bmatrix} c \\ d \\ e \end{bmatrix} = c\vec{v}_1 + d\vec{v}_2 + e\vec{v}_3.$$
 (3)

Examples

Let v_1, v_2, v_3 be vectors in \mathbb{R}^3 . How can you write the vector equation

in terms of matrix multiplication?

Use the vector have as solumn vector

$$A = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_2 & \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_1 & \vec{V}_2 & \vec{V}_3 \\ \vec{V}_3 & \vec{V}_3 \end{bmatrix} = \begin{bmatrix} \vec{V}_2 & \vec{V}_3 & \vec{V}_3 \\ \vec{V}_3 & \vec{$$

The system Ax = b

The result of $A\vec{x}$, where A is an $m \times n$ matrix and $\vec{x} \in \mathbb{R}^n$ is a vector $\vec{b} \in \mathbb{R}^m$, where

$$\langle n | \text{matrix ar}$$

$$\operatorname{nd} \vec{x} \in \mathbb{R}^n$$

$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

$$\vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

If A is a square matrix, i.e., A is $n \times n$, and $\vec{x} \in \mathbb{R}^n$, then $A\vec{x} = \vec{b} \in \mathbb{R}^n$.

Linear System

The system Ax = b: What if x is unknown?

The result of $A\vec{x}$, where A is an $m \times n$ matrix and $\vec{x} \in \mathbb{R}^n$ is a vector $\vec{b} \in \mathbb{R}^m$, where

$$ec{b} = \left[egin{array}{c} b_1 \ b_2 \ dots \ b_m \end{array}
ight]$$

When A and \vec{x} are given, computing \vec{b} is straight forward. However, the reverse is not always true (or even possible). That is, if A and \vec{b} are given, it is not always possible to find \vec{x} .

If A is a square matrix, i.e., A is
$$n \times n$$
, and $\vec{x} \in \mathbb{R}^n$, then $A\vec{x} = \vec{b} \in \mathbb{R}^n$.

Next Lectures, in to solve
$$Ax = b$$

Square and instruction is easy

 $A = \begin{pmatrix} a_{11} & b_{12} & b_{13} & b_{14} & b_{15} & b_{14} & b_{15} & b_{15}$

Examples

Consider the system
$$A\vec{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \vec{b}$$
.

Suppose that b_1 , b_2 , and b_3 are given and you want to compute x_1 , x_2 , and x_3 in terms of the components of \vec{b} .

Therefore

Traingular

Left $x_1 = b_1$
 $-x_1 + x_2 = b_1$
 $-x_1 + x_3 = b_3$

First hand, side

 $x_1 = b_1$
 $x_2 = b_1 + b_2$
 $x_3 = b_1 + b_2$

First hand, side

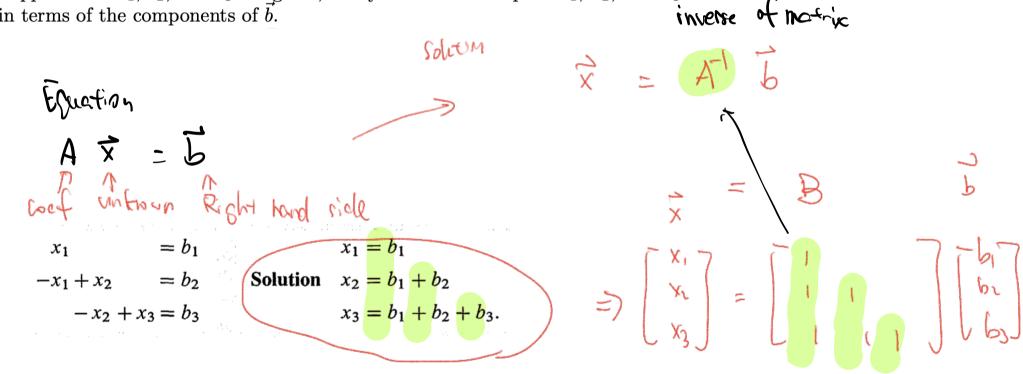
 $x_1 = b_1$
 $x_2 = b_1 + b_2$
 $x_3 = b_1 + b_2$

First hand, side

Examples

Consider the system
$$A\vec{x} = \begin{bmatrix} 1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix} = \vec{b}.$$

Suppose that b_1 , b_2 , and b_3 are given, and you want to compute x_1 , x_2 , and x_3 in terms of the components of \vec{b} .



Not every matrix have an inverse

Cyclic
$$Cx = \begin{bmatrix} 1 & 0 \\ -1 & 1 \end{bmatrix}$$

Cyclic
$$Cx = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = b.$$

Two ways to calculate the matrix vector multiplication Linear combination

Dot product

Not every matrix have an inverse

Cyclic
$$Cx = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = b.$$

$$b = (1,3,5)$$

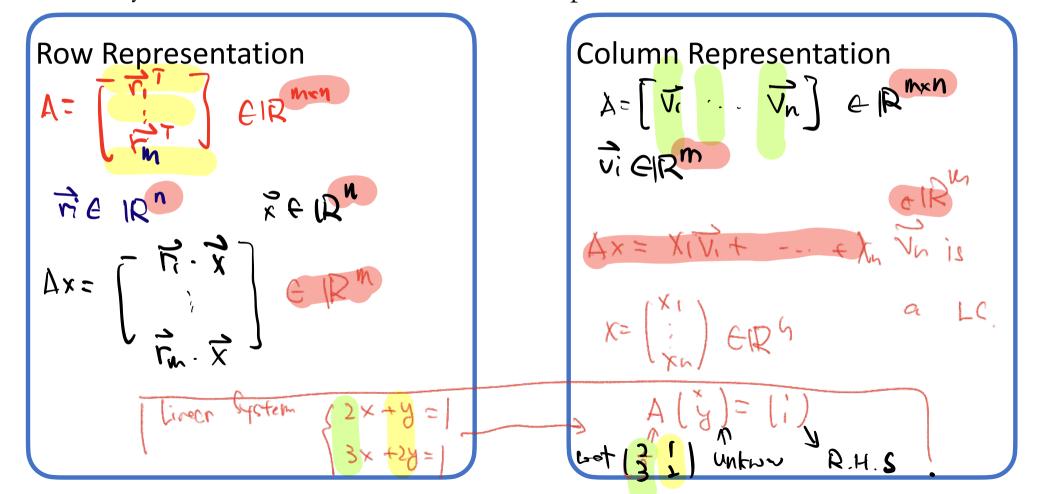
Not every matrix have an inverse

Cyclic
$$Cx = \begin{bmatrix} 1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = \begin{bmatrix} x_1 - x_3 \\ x_2 - x_1 \\ x_3 - x_2 \end{bmatrix} = b.$$

$$b = (0,0,0)$$

Review

• Two way to calculate the Matrix-vector multiplication



Questions?