Lecture 2
 Spans and Matrices

Yiping Lu
Based on Dr. Ralph Chikhany's Slide

Reminders

- Get access to Gradescope, Campuswire.
- Obtain the textbook.
- Problem Set 1 due by 11.59 pm on Friday (NY time). Next week
\checkmark Late work policy applies.
- Recap Quiz 1 due by 11.59 pm on Sunday (NY time). This Friday on Grodescope
Late work policy does not apply.
- Recap Quiz is timed.

Once you start, you have 60 minutes to finish it (even if you close the tab)

Cheat Sheet

- Cheat Sheet overleaf: https://www.overleaf.com/read/jibswyyqvzdx\#8803d5

Recap

Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ be a set of vectors in \mathbb{R}^{n}. We define

$$
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}\right\}=\text { set of all linear combinations of } \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}
$$

Recap

Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ be a set of vectors in \mathbb{R}^{n}. We define

$$
\begin{gathered}
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}\right\}=\text { set of all linear combinations of } \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m} \\
u \cdot v . w \in \mathbb{R}^{3}
\end{gathered}
$$

Recap
Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ be a set of vectors in \mathbb{R}^{n}. We define
$\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}\right\}=$ set of all linear combinations of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$
$\vec{\omega}$ is not parallel /aliear with \vec{v}
$\xrightarrow{\text { are }}$ Then spar $[\vec{U}, \vec{w}]$ is a plane in \mathbb{R}^{2}
 \& purple phase lore is the span

\vec{w} is coliens/parallel with $\vec{\sigma}$
$\operatorname{span}\{\vec{v} \cdot \vec{w}\}=\operatorname{span}\{\overrightarrow{0}\}$ is still a line

Recap

Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ be a set of vectors in \mathbb{R}^{n}. We define

$$
\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}\right\}=\text { set of all linear combinations of } \vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}
$$

Strang Section 1.3-Matrices

Course notes adapted from Introduction to Linear Algebra by Strang (5th ed), N. Hammoud's NYU lecture notes, and Interactive Linear Algebra by

Margalit and Rabinoff, in addition to our text

Matrices
An $m \times n$ matrix A is a rectangular array of (real) numbers $a_{i j}$ with m rows and $\sqrt{\eta}$ columns, where
m: \# tows
n : 井 columns

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 \cap} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]
$$

$m \times n$ matrix as $\mathbb{R}^{m \times n} \quad\left[\begin{array}{llll}a_{m 1} & a_{m 2} & \ldots & a_{m n}\end{array}\right]$

A matrix is called/square if it is $n \times n$, i.e., square $\mathbb{R}^{n \times n}$ it has the same number of rows and columns.

Example.

$$
\begin{array}{lll}
A=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right) \text { is } 2 \times 3 \text { matrix } & A \in \mathbb{R}^{2 \times 3} \\
a_{12}=2 & A=\left(\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{32} & a_{23}
\end{array}\right) \\
a_{23}=6 & &
\end{array}
$$

Matrices

Let A be an $m \times n$ matrix.
We write $a_{i j}$ for the entry in the i th row and the j th column. It is called the $i j$ th entry of the matrix.

The entries $\underline{a_{11}}, a_{22}, a_{33}, \ldots$ are the diagonal entries; they form the main diagonal of the matrix.
A diagonal matrix is a squarematrix whose only nonzero entries are on the main diagonal.

The $n \times n$ identity matrix I_{n} is the diagonal matrix with all diagonal entries equal to 1 . It is special because $I_{n} v=v$ for all v in \mathbf{R}^{n}.

$$
\left(\begin{array}{lll}
\square & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23}
\end{array}\right)\left(\begin{array}{ll}
a_{12} & a_{12} \\
a_{21} & \%_{22} \\
a_{31} & a_{32}
\end{array}\right)
$$

Matrices
The zero matrix (of size $m \times n$) is the $m \times \overline{n \text { matrix }} 0$ with all zero entries.

$$
0=\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

The transpose of an $m \times n$ matrix A is the $n \times m$ matrix A^{T} whose rows are the columns of A. In other words, the $i j$ entry of A^{T} is $a_{j i}$.

$$
A=\left(\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 j} \\
a_{21} & \cdots \\
a_{i 1} & a_{i_{2}} & \cdots & a_{i j} \\
\cdots
\end{array}\right) \text { i-th now }
$$

$$
\begin{aligned}
& \left.\begin{array}{c}
A \\
\left(\begin{array}{cc}
a_{11} & a_{12} \\
a_{13} \\
a_{21} & a_{22}
\end{array} a_{23}\right.
\end{array}\right) \text { man } \begin{array}{c}
A^{T}\left(\begin{array}{cc}
a_{11} & a_{21} \\
a_{12} & a_{22} \\
a_{13} & a_{23}
\end{array}\right) \\
\text { Example. } \mathrm{A}=\left(\begin{array}{lll}
1 & 2 & 3 \\
4 & 5 & 6
\end{array}\right)
\end{array} \\
& \Rightarrow A^{T}=\left(\begin{array}{ll}
1 & 4 \\
2 & 5 \\
3 & 6
\end{array}\right) \\
& \text { Example } A=\left(\begin{array}{l}
1 \\
2 \\
3
\end{array}\right) \text { is a vector } \mathbb{R}^{3 \times 1} \quad \begin{array}{l}
\text { 3-rou } \\
1 \text {-colum }
\end{array} \\
& A^{\top}=\left(\begin{array}{lll}
1 & 2 & 3
\end{array}\right) \quad \mathbb{R}^{(x 3)} \quad \begin{array}{ll}
1 \text {-row } \\
3-6) 4 m
\end{array}
\end{aligned}
$$

Column vs. Row Representation of a Matrix
each colum y of A is a vector $\in \mathbb{R}^{m}$

$$
\vec{V}_{1}=\left[\begin{array}{c}
a_{11} \\
a_{21} \\
a_{m 1} \\
i
\end{array}\right] \cdots \vec{V}_{n}=\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
a_{n n}
\end{array}\right]
$$

Then $A=\left[\begin{array}{llll}\vec{v}_{1} & \vec{v}_{2} & \cdots & \vec{v}_{n}\end{array}\right]$

Column vs. Row Representation of a Matrix
Exarate $A=\left(\begin{array}{lll}1 & 2 & 3 \\ 4 & 5 & 6\end{array}\right) \in \mathbb{R}^{2 \times 3}$

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & & \\
a_{m 1} & a_{m 2} & \ldots & a_{m n}
\end{array}\right]\left[\begin{array}{l}
\overrightarrow{r_{1}}=\binom{1}{2} \\
\overrightarrow{r_{1}}=\left(\begin{array}{l}
1 \\
3
\end{array}\right. \\
\vec{r}_{2}^{\top} \\
4
\end{array}\right)
$$

$\left[\begin{array}{llll}a_{11} & \cdots & a_{1} & \cdots \\ a_{1 n}\end{array}\right]=\left[\begin{array}{c}a_{11} \\ \vdots \\ a_{i n}\end{array}\right]^{\top} \quad \vec{r}_{1}=\left(\begin{array}{c}a_{11} \\ \vdots \\ a_{1 n}\end{array}\right)^{\in \mathbb{R}^{n}}$
m- Bu w vector each now vector $\in \mathbb{N}^{n}$

Linear Combination in Matrix Notation

* Multiply a matrix with a lector $\left\{\begin{array}{l}\text { Glumn Understadic } \\ \text { Row Understicio }\end{array}\right.$

A linear combination of n vectors, $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{n}$, in \mathbb{R}^{m} is given by

$$
x_{1} \vec{v}_{1}+x_{2} \vec{v}_{2}+\cdots+x_{n} \vec{v}_{n}
$$

$A \in \mathbb{R}^{m \times n}$ can only multiply with a vector $\vec{x} \in \mathbb{R}^{n}$
This can be expressed as an $m \times n$ matrix A multiplying a vector $\vec{x} \in \mathbb{R}^{n}$

$$
\vec{v}_{v_{1}} \in \mathbb{R}^{m}
$$

$$
\hat{\vec{x}} \in \mathbb{R}_{n}^{n}
$$

a vector

n is the \# row of lector
You can understand a vector in $\mid \mathbb{R}^{m}$ as a $\mid \mathbb{R}^{m \times 1}$ matrix
$A \in \mathbb{R}^{\operatorname{m\times n}}$
$\leqslant{ }_{v}^{x \in \mathbb{R}^{n}}$

$$
A=\left[\vec{v}_{1} \cdots \cdots \vec{v}_{\boldsymbol{n}}\right]
$$

$A x$ lie in the span of the column vectors of matrix A
$A x \in \mathbb{R}^{m}$

$$
\begin{aligned}
& \text { Ax } \in \operatorname{span}\left\{\vec{v}_{1} \cdots \vec{v}_{n}\right\} \text { Yes! } \\
& \text { is L.C. of } \vec{v}_{1} \cdots \vec{v}_{n}
\end{aligned}
$$

\mathbb{R}^{m}
For all the vector $\stackrel{v}{v}$ in the span of the column vectors of matrix A, we can find a vector x, such that $A x=v$ Yer!

$$
\text { if } \vec{v} \in \operatorname{span}\left\{\vec{v}_{1} \ldots \vec{v}_{n}\right\}
$$

can we find a vector x s.t. $A_{x}=\vec{V}$

$$
\vec{v} \text { is L.C. of }\left\{\vec{u} \ldots \vec{v}_{n}\right\}_{\text {means }} \vec{v}=c_{1} \vec{v}_{1}+\cdots+c_{n} \vec{v}_{n} \text {. Then } A\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=\begin{gathered}
c_{1} \\
\vec{v}_{1}+\cdots \\
= \\
=\vec{v}
\end{gathered} c_{n} \vec{v}_{n}
$$

Dot product as matrix vector multiplication
$x \cdot y$ is $x^{\top} y$

$$
\vec{x} \cdot \vec{y}=x^{\top} y
$$

! here
$x \cdot y=\left(\begin{array}{c}x_{1} \\ x_{2} \\ \vdots \\ x_{n}\end{array}\right) \cdot\left(\begin{array}{c}y_{1} \\ y_{2} \\ \vdots \\ y_{n}\end{array}\right) \stackrel{\text { def }}{=} x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n} . \rightarrow$ is a roe l number
understand \vec{x}, \vec{y} as a LC.

$$
x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

$$
\begin{gathered}
\text { Transpose of } \vec{y} \\
\text { Then }\left[\begin{array}{lll}
y_{1} & \cdots & y_{n}
\end{array}\right] \cdot\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right]
\end{gathered}
$$

by cola

$$
x_{1} y_{1}+x_{2} y_{2}+\cdots+x_{n} y_{n}
$$

The $n \times n$ identity matrix I_{n} is the diagonal matrix with all diagonal entries equal to 1 . It is special because $I_{n} v=v$ for all v in \mathbf{R}^{n}.

$$
\begin{aligned}
& I_{3}=\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right) \\
& \uparrow \\
& \text { fol other are zero } \\
& \text { Laity din ar y element are }
\end{aligned}
$$

(2) Row

$$
\left.\begin{array}{l}
I_{3}=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \\
I_{3} \cdot\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{2}
\end{array}\right)=\left(\begin{array}{lll}
(1,0,0) \cdot\left(\begin{array}{lll}
\left(x_{1}\right. & x_{2} & \left.x_{3}\right) \\
10,1,0) \cdots\left(x_{1}\right. & x_{2} & x_{3}
\end{array}\right) \\
(0,0,-1) \cdots & \left(x_{1}\right. & x_{2}
\end{array} x_{2}\right)
\end{array}\right)
$$

0

$$
\begin{aligned}
I_{3}= & \left(\begin{array}{ccc}
\vec{V}_{1} & \vec{V}_{2} & \vec{V}_{3} \\
11 & 11 & 1
\end{array}\right] \\
\left(\begin{array}{lll}
1 \\
0 \\
0
\end{array}\right) & \left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{aligned}\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)
$$

$$
I_{3} \vec{x}=x_{1}\binom{\frac{1}{0}}{0}+x_{2}\binom{0}{\frac{1}{0}}+x_{3}\left(\begin{array}{c}
0 \\
0 \\
\frac{1}{3}
\end{array}\right)=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)=\vec{x} \quad=\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)
$$

Linear Combination in Matrix Notation
Example: Let $A=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]$, and $\vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]$. Compute $A \overrightarrow{v_{2}}$.

$$
\begin{aligned}
\overrightarrow{v_{1}} & =\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right] \quad \vec{v}_{2}=\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right] \quad \vec{v}=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
A \vec{x} & =x_{1} \cdot \vec{v}_{1}+x_{2} \cdot \vec{v}_{2}+x_{3} \cdot \vec{v}_{3} \\
& =x_{1} \cdot\left[\begin{array}{c}
1 \\
-1 \\
0
\end{array}\right]+x_{2}\left[\begin{array}{c}
0 \\
1 \\
-1
\end{array}\right]+x_{3}\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right] \\
& =\left[\begin{array}{c}
x_{1}+0 \cdot x_{2}+0 \cdot x_{3} \\
-x_{1}+x_{2}+0 \cdot x_{3} \\
0 \cdot x_{1}-x_{2}+x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1} \\
x_{1}-x_{1} \\
x_{3}-x_{2}
\end{array}\right]
\end{aligned}
$$

Dot Product with Rows

$$
A \boldsymbol{x}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
(1,0,0) \cdot\left(x_{1}, x_{2}, x_{3}\right) \\
(-1,1,0) \cdot\left(x_{1}, x_{2}, x_{3}\right) \\
(0,-1,1) \cdot\left(x_{1}, x_{2}, x_{3}\right)
\end{array}\right]
$$

$$
A \boldsymbol{x}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
(1,0,0) \cdot\left(x_{1}, x_{2}, x_{3}\right) \\
(-1,1,0) \cdot\left(x_{1}, x_{2}, x_{3}\right) \\
(0,-1,1) \cdot\left(x_{1}, x_{2}, x_{3}\right)
\end{array}\right]
$$

$$
A \boldsymbol{x}=\left[\begin{array}{rrr}
1 & 0 & 0 \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
(1,0,0) \cdot\left(x_{1}, x_{2}, x_{3}\right) \\
(-1,1,0) \cdot\left(x_{1}, x_{2}, x_{3}\right) \\
(0,-1,1) \cdot\left(x_{1}, x_{2}, x_{3}\right)
\end{array}\right]
$$

Matrix times vector

$\underset{\text { Matrix times vector }}{\text { M }} A x=\left[\begin{array}{lll}\vec{w}_{1} & \vec{w}_{2} & \vec{w}_{3}\end{array}\right]\left[\begin{array}{l}c \\ d \\ e\end{array}\right]=c \vec{y}_{1}+d \vec{v}_{2}+e \vec{w}_{3}$.

Dot Product View:

$$
\begin{aligned}
& \text { - How etch pow do } \left.\begin{array}{rl}
\text { advt pocket }
\end{array}\right] \rightarrow \mathbb{R} \\
& \begin{aligned}
A \in \mathbb{R}^{m \times n} \quad \text { There } & \vec{r}_{1} \in \mathbb{R}^{n} \in \text { the same size } \leftarrow \text { They can do } \\
& \vec{x} \in \mathbb{R}^{n}
\end{aligned} \quad \text { dor pnoluct. } \\
& A \in \mathbb{R}^{m \times n} \quad x \in \mathbb{R}^{h} \rightarrow A x \in \mathbb{R}^{m}
\end{aligned}
$$

Examples
Let v_{1}, v_{2}, v_{3} be vectors in \mathbf{R}^{3}. How can you write the vector equation

use the vector here as column Leitor

The system $A x=b$

The result of $A \vec{x}$, where A is an $m \times n$ matrix and $\vec{x} \in \mathbb{R}^{n}$ is a vector $\vec{b} \in \mathbb{R}^{m}$, where

$$
\vec{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

If A is a square matrix, i.e., A is $n \times n$, and $\vec{x} \in \mathbb{R}^{n}$, then $A \vec{x}=\vec{b} \in \mathbb{R}^{n}$.
Linear System $\quad\langle\Rightarrow$ L. C.
$b_{1}=x_{1} \cdot a_{11}+x_{2} a_{12}+\cdots+x_{n} \cdot a_{n} \cdot i f \quad \vec{b}=\left[\begin{array}{c}b_{1} \\ \vdots \\ b_{2}=x_{m} \cdot a_{21}+x_{2} a_{22}+\cdots+x_{n} \cdot a_{2 n}\end{array}\right]$ is L.C. of $\overrightarrow{v_{1}} \ldots \vec{v}_{n}$

$$
b_{m}=x_{1} \cdot a_{m n}+x_{2} a_{m 2}+\cdots+x_{n} \cdot a_{m n} \quad \text { if }\left[\frac{b_{1}}{b_{m}}\right]=\underline{x}_{1} \cdot \vec{v}_{1}+\cdots+x_{n} \vec{v}_{n}
$$

The system $A x=b:$ What if x is unknown?
The result of $A \vec{x}$, where A is an $m \times n$ matrix and $\vec{x} \in \mathbb{R}^{n}$ is a vector $\vec{b} \in \mathbb{R}^{m}$, where

$$
\vec{b}=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

When A and \vec{x} are given, computing \vec{b} is straight forward. However, the reverse is not always true (or even possible). That is, if A and \vec{b} are given, it is not always possible to find \vec{x}.

$$
\begin{aligned}
& \text { If } A \text { is a square matrix, ide., } A \text { is } n \times n \text {, and } \vec{x} \in \mathbb{R}^{n} \text {, then } A \vec{x}=\vec{b} \in \mathbb{R}^{n} \text {. } \\
& \text { Next Lectuns, is to sol } A \vec{x}=\vec{b} \\
& \text { Why diag matrix is easy } \\
& \left\{\begin{array}{llll}
a_{11} x_{1} & & & =b_{1} \\
& a_{22} x_{1} & & =b_{1}
\end{array}\right. \\
& a_{n} x_{n}=b_{n} \\
& A=\left(\begin{array}{lll}
a_{11} & & \\
& \ddots & \\
& a_{n n}
\end{array}\right) \quad \Delta x=b a_{\text {are zeno }}\left\{\begin{array}{l}
a_{11} x_{11}+a_{12} x_{2} \cdots+a_{11} x_{n}=x_{1}+a_{n 2} x_{21} \cdots+a_{2 n} x_{n}=b_{2} \\
a_{n 1} x_{1}+a_{n 2} x_{1}+\cdots+a_{n n} x_{n}=b_{n n}
\end{array}\right.
\end{aligned}
$$

Examples
Consider the system $\left.A \vec{x}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]=\vec{b}$.
Suppose that b_{1}, b_{2}, and b_{3} are given/ and you want to compute x_{1}, x_{2}, and x_{3} in terms of the components of \vec{b}.
"lover Trainguler"

$$
\left\{\begin{array}{rl}
x_{1}=b_{1} & \rightarrow b_{2} \\
-x_{1}+x_{2} \\
-x_{2}+x_{3} & =b_{3}
\end{array} \quad \rightarrow x_{1}=x_{2}=b_{1}+b_{2}\right.
$$

ency to solve be cause. he can solve. ore by one.

Examples
Consider the system $A \vec{x}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]=\vec{b}$.
Suppose that b_{1}, b_{2}, and b_{3} are given, and you want to compute x_{1}, x_{2}, and x_{3} in terms of the components of \vec{b}.
inverse of metric

Not every matrix have an inverse

Cyclic

$$
C \boldsymbol{x}=\left[\begin{array}{rrr}
1 & 0 & -\mathbf{1} \\
-1 & 1 & 0 \\
0 & -1 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{l}
x_{1}-x_{3} \\
x_{2}-x_{1} \\
x_{3}-x_{2}
\end{array}\right]=\boldsymbol{b}
$$

Two ways to calculate the matrix vector multiplication
Next time. Linear combination
"Not every mail tore a imesse"

Dot product

Not every matrix have an inverse
Cyclic $C x=\left[\begin{array}{rrr}1 & 0 & -1 \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}x_{1}-x_{3} \\ x_{2}-x_{1} \\ x_{3}-x_{2}\end{array}\right]=\boldsymbol{b}$.

$$
b=(1,3,5)
$$

Not every matrix have an inverse
Cyclic $C \boldsymbol{x}=\left[\begin{array}{rrr}1 & 0 & -\mathbf{1} \\ -1 & 1 & 0 \\ 0 & -1 & 1\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right]=\left[\begin{array}{l}x_{1}-x_{3} \\ x_{2}-x_{1} \\ x_{3}-x_{2}\end{array}\right]=\boldsymbol{b}$.

$$
b=(0,0,0)
$$

Review

- Two way to calculate the Matrix-vector multiplication

Row Representation

$$
\begin{aligned}
& A=\left[\begin{array}{c}
\vec{r}_{1}^{\top} \\
\vdots \\
{\overrightarrow{r_{m}}}^{T}
\end{array}\right] \in \mathbb{R}^{m \times n} \\
& \overrightarrow{r_{1}} \in \mathbb{R}^{n} \quad \vec{x} \in \mathbb{R}^{n} \\
& \Delta x=\left[\begin{array}{c}
\overrightarrow{r_{1}} \cdot \vec{x} \\
\vdots \\
\vec{r}_{m} \cdot \vec{x}
\end{array}\right] \in \mathbb{R}^{m}
\end{aligned}
$$

Column Representation

$$
\begin{aligned}
& x=\left(\begin{array}{l}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \in \mathbb{R}^{h} \\
& A\binom{x}{y}=\left(\begin{array}{l}
1 \\
1
\end{array}\right. \\
& \operatorname{oot}\left(\begin{array}{c}
\frac{2}{1} \\
3 \\
1
\end{array}\right) \text { unkww R.H.S }
\end{aligned}
$$

Questions?

