Lecture 2
 Vectors and Spans

Yiping Lu
Based on Dr. Ralph Chikhany's Slide

Reminders

- Get access to Gradescope, Campuswire.
- Obtain the textbook.
- Problem Set 1 due by 11.59 pm on Friday (NY time). 2 Weeks from Now \checkmark Late work policy applies.
- Recap Quiz 1 due by 11.59 pm on Sunday (NY time). Next Week
* Late work policy does not apply.
- Recap Quiz is timed.

Once you start, you have 60 minutes to finish it (even if you close the tab)
Latex- Overleaf $->$ Copy (Not Requined, polf verion privided)

- Linear HW2
\square Linear H

You can put what you want to recap in the (anonymous) form.

3 hours ago
3 hours ago

ReCap

Course notes adapted from Introduction to Linear Algebra by Strang (5th ed), N. Hammoud's NYU lecture notes, and Interactive Linear Algebra by

Margalit and Rabinoff, in addition to our text

Vector Addition
$\left(\begin{array}{l}a \\ b \\ c\end{array}\right)+\left(\begin{array}{l}x \\ y \\ z\end{array}\right)=\left(\begin{array}{l}a+x \\ b+y \\ c+z\end{array}\right)$

- Can I add \mathbb{R}^{2} lector with \mathbb{R}^{3} lector? No \mathbb{R}^{n} can only add $n^{n+h} \mathbb{R}^{n}$ x add with \mathbb{R}^{m} if $n \neq m$.
parallyng Rule.

$$
\vec{a}+\vec{b}=? \rightarrow
$$

$$
\begin{aligned}
& \frac{\vec{a}-\vec{b}}{\vec{a}+(-\vec{b})}=? \\
& \vec{a}-\vec{a}=?
\end{aligned}
$$

$\overrightarrow{0}$ is not 0

Scalar vector multiplication

$$
c\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\left(\begin{array}{ll}
c & x \\
c & y \\
c \cdot & y
\end{array}\right)
$$

just change the length. but the same direction.

$$
0 \cdot \vec{V}=\overrightarrow{0} \text { is not } 0
$$

$$
\begin{aligned}
c\left(\begin{array}{l}
\vec{a}+\vec{b}
\end{array}\right) & =c \vec{a}+c \vec{b} \quad(v) \\
c\left(\binom{x}{y}+\binom{a}{b}\right) & =c\binom{x+a}{y+b}=\binom{c(x+a)}{c(y+b)} \\
& =\binom{c x}{c y}+\binom{c a}{c b}
\end{aligned}
$$

Some multiples of v.

Dot Product

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \bullet\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=a x+b y+c z . \quad \neq\left(\begin{array}{c}
a \cdot x \\
b \cdot y \\
c z
\end{array}\right)
$$

is scalar is rot vector

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \cdot\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=\begin{gathered}
\text { weights or oof. } \\
\rightarrow+b y+c z
\end{gathered}
$$

vector of corf.
it is linear ambinatun of x, y, z
Dot product is a linear combination
"useful to understand like this in lecture"

Dot Product

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \bullet\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=a x+b y+c z
$$

Example 3 Dot products enter in economics and business. We have three goods to buy and sell. Their prices are $\left(p_{1}, p_{2}, p_{3}\right)$ for each unit-this is the "price vector" \boldsymbol{p}. The quantities we buy or sell are $\left(q_{1}, q_{2}, q_{3}\right)$-positive when we sell, negative when we buy. Selling q_{1} units at the price p_{1} brings in $q_{1} p_{1}$. The total income (quantities q times prices p) is the dot product $\boldsymbol{q} \cdot \boldsymbol{p}$ in three dimensions:

$$
\text { Income }=\binom{\text { quantifies }}{\left(q_{1}, q_{2}, q_{3}\right)} \cdot\left(p_{1}, p_{2}, p_{3}\right)=q_{1} p_{1}+q_{2} p_{2}+q_{3} p_{3}=\text { dot product. }
$$

$$
\left(\begin{array}{l}
a \\
b \\
c
\end{array}\right) \bullet\left(\begin{array}{l}
x \\
y \\
z
\end{array}\right)=a x+b y+c z
$$

Unit Vector: *ector whose length is 1 $\frac{\vec{x}}{\|\vec{x}\|}$ is the unit the same direction as \vec{x}

0 if Vector \vec{v}
$\|\vec{v}\|:$ length.
(2) if scalar C
$|c|$: absolute value.
$\overparen{E_{x}}\|\vec{a}+\vec{b}\|$
vector
$|\vec{a} \cdot \vec{b}|$
salon |r\|\| And $|c|$
with cane direction
What is the unit vector of $(1,1)$?
lest of (1.1) is $\sqrt{2}$.

$$
\frac{\binom{1}{1}}{\sqrt{2}}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}}
$$

Dot Product
Communicative $\quad \vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}$
Distributive $\quad(\vec{a}+\vec{b}) \cdot \vec{c}=\vec{a} \cdot \vec{c}+\vec{b} \cdot \vec{c}$
L.C $\left(c_{1} \vec{a}+c_{2} \vec{b}\right) \cdot \vec{c}=\underline{c_{1}} \vec{a} \cdot \vec{c}+c_{2} \vec{b} \vec{c}$

Example $\|\vec{a}+\vec{b}\|^{2}+\|\vec{a}-\vec{b}\|^{2}=(\vec{a}+\vec{b}) \cdot(\vec{a}+\vec{b})+(\vec{a}-\vec{b}) \cdot(\vec{a}-\vec{b})$

$$
\begin{aligned}
& =\vec{a} \cdot \vec{a}+2 \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{b} \\
& : \vec{a} \cdot \vec{a}-2 \vec{a} \cdot \vec{b}+\vec{b} \cdot \vec{b} \\
& \|,\| \vec{a} \|^{2}
\end{aligned}
$$

$\Delta\|\vec{a}+\vec{b}\|^{2}+\|\vec{a}-\vec{b}\|^{2}=2 \cdot\|\vec{a}\|^{2}+2 \cdot\|\vec{b}\|^{2}$

Angle

How to decide whether θ is larger than $\frac{\pi}{2}$

$$
\theta>\frac{\pi}{2} \Leftrightarrow \cos \theta<0 \Leftrightarrow \vec{a} \cdot \vec{b}<0
$$

the x-axis of $\overrightarrow{a_{1}}$ is negative

$$
\vec{a} \quad \rightarrow \frac{\pi}{2}=\binom{1}{0}
$$

$$
\vec{a}=\binom{a_{x}}{a_{y}} \quad \vec{a}-\vec{c}=\binom{a_{x}}{a_{y}} \cdot\binom{1}{0}=Q_{x}<0
$$

What is the unit vectorparallel/orthogonal to (4,3)? Harder Question

$$
\vec{x} \rightarrow \frac{\vec{x}}{\|\dot{x}\|} \quad\left\|\binom{4}{3}\right\|=5 \rightarrow\binom{4 / 5}{3 / 5}
$$

Harder ? ortlognil ore. $\quad\binom{-3 / 5}{4 / 5}$ chad $\binom{-3 / 5}{4 / 5}-\binom{4}{3}=-3 / 5 \times 4+4 / 5 \times 3=-12 / 5+12 / 5=0$ why? in leer of lectures

Angle

calculate $\cos (\beta-\alpha)$

$$
\begin{aligned}
& \begin{array}{l}
\text { betreon } \\
\text { mande } V \cdot \vec{a} \\
\text { is } \theta=\beta-\alpha \\
\cos (\beta-\alpha)
\end{array}=\frac{\vec{a} \cdot \vec{b}}{\|\vec{a}\| \cdot\|\vec{b}\|}=\frac{\left[\begin{array}{c}
\cos \beta \\
\sin \beta
\end{array}\right]\left[\begin{array}{c}
\cos \alpha] \\
\sin \alpha
\end{array}\right]}{\frac{\|\vec{a}\| \cdot}{\frac{\|\vec{b}\|}{\text { unit vel }} \frac{\text { unit vector }}{\|}}=\cos p \cdot \cos \alpha+\sin \beta \cdot \sin \alpha}
\end{aligned}
$$

Motivation: Best fit of linear equation

overdetermined linear system

$$
\begin{gathered}
2 x=2 \\
x=1 \quad \Rightarrow \quad\binom{2 x}{x}=\binom{2}{1}, ~
\end{gathered}
$$

Example
1.2 C Find a vector $x=(c, d)$ that has dot products $x \cdot r=1$ and $x \cdot s=0$ with the given vectors $r=(2,-1)$ and $s=(-1,2)$.

How is this question related to Example 1.1 C , which solved $c \boldsymbol{v}+d \boldsymbol{w}=\boldsymbol{b}=(1,0)$?

$$
\begin{aligned}
& \vec{x} \cdot \vec{r}=\binom{c}{d}\binom{2}{-1}=2 c-d=1 \\
& \vec{x} \cdot \vec{s}=\binom{c}{d}\binom{-1}{2}=-c+2 d=0
\end{aligned} \quad \rightarrow \quad c \cdot\left[\begin{array}{c}
2 \\
-1
\end{array}\right]+d \cdot\left[\begin{array}{c}
-1 \\
2
\end{array}\right]=\left[\begin{array}{l}
1 \\
0
\end{array}\right]
$$

L.C. /linear system.
1.1 C Find two equations for the unknowns c and d so that the linear combination

$$
\text { lectures } 3 \text {. Matrices. }
$$ $c \boldsymbol{v}+d \boldsymbol{w}$ equals the vector \boldsymbol{b} :

$$
v=\left[\begin{array}{r}
2 \\
-1
\end{array}\right] \quad w=\left[\begin{array}{r}
-1 \\
2
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
0
\end{array}\right] .
$$

Inequalities

Example 6 The dot product of $\boldsymbol{v}=(a, b)$ and $\boldsymbol{w}=(b, a)$ is $2 a b$. Both lengths are $\sqrt{a^{2}+b^{2}}$. The Schwarz inequality in this case says that $2 a b \leq a^{2}+b^{2}$.

Reminder: Linear Combination

$$
\vec{w}=c_{1} \overrightarrow{v_{1}}+c_{2} \overrightarrow{v_{2}}+\cdots+c_{p} \overrightarrow{v_{p}}
$$

where $c_{1}, c_{2}, \ldots, c_{p}$ are scalars, $v_{1}, v_{2}, \ldots, v_{p}$ are vectors in \mathbf{R}^{n}, and w is a vector in \mathbf{R}^{n}.

Definition
We call w a linear combination of the vectors $v_{1}, v_{2}, \ldots, v_{p}$. The scalars $c_{1}, c_{2}, \ldots, c_{p}$ are called the weights or coefficients.

Geometric Interpretation of Linear Combinations

$$
\vec{u} \| \vec{v} \Rightarrow \text { L.C. will form a live in } \mathbb{R}^{n}
$$

line in \mathbb{R}^{n}

Geometric Interpretation of Linear Combinations

Transfer Linear Equation to a Linear Combination Problem

$$
\begin{aligned}
& \begin{array}{l}
2 x+y=1 \\
x+y=1
\end{array} \Leftrightarrow x \cdot\binom{2}{1}+y \cdot\binom{1}{1}=\binom{1}{1} \\
& \text { the same }
\end{aligned} \begin{aligned}
&\left(\begin{array}{l}
\text { is }\binom{1}{1} \text { be represented by L.C. of } \\
\text { vector }\binom{2}{1} \\
\text { and }\binom{1}{1} ?
\end{array}\right. \\
&\binom{(1}{1}=x \cdot\binom{2}{1}+y\binom{1}{1}=\left(\begin{array}{c}
\frac{2 x+y}{x+y}
\end{array}\right) \\
&\left(\begin{array}{l}
1 \\
1 \\
j
\end{array}\right)=x\left(\begin{array}{l}
2 \\
1 \\
2
\end{array}\right)+y\left(\begin{array}{l}
1 \\
1 \\
3
\end{array}\right)=\left(\begin{array}{c}
2 x+y \\
x+y \\
2 x+3 y
\end{array}\right) \Rightarrow\left\{\begin{array}{c}
2 x+y=1 \\
x+y=1 \\
2 x+3 y=0
\end{array}\right.
\end{aligned}
$$

Spans

Course notes adapted from Introduction to Linear Algebra by Strang (5th ed), N. Hammoud's NYU lecture notes, and Interactive Linear Algebra by

Margalit and Rabinoff, in addition to our text

Reminder: Linear Combination

$$
w=c_{1} v_{1}+c_{2} v_{2}+\cdots+c_{p} v_{p}
$$

where $c_{1}, c_{2}, \ldots, c_{p}$ are scalars, $v_{1}, v_{2}, \ldots, v_{p}$ are vectors in \mathbf{R}^{n}, and w is a vector in \mathbf{R}^{n}.

Definition
We call w a linear combination of the vectors $v_{1}, v_{2}, \ldots, v_{p}$. The scalars $c_{1}, c_{2}, \ldots, c_{p}$ are called the weights or coefficients.

Span
Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ be a set of vectors in \mathbb{R}^{n}. We define
$\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}\right\}=$ set of all linear combinations of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$

For example, what is the span of $(\underline{2,-4)}$ and $(1,1)$?

(1) Ansever: \mathbb{R}^{2} is the span.

Span
Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ be a set of vectors in \mathbb{R}^{n}. We define
$\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}\right\}=$ set of all linear combinations of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$

Is $\left[\begin{array}{l}1 \\ 2\end{array}\right]$ in the span of $\left[\begin{array}{l}2 \\ 4\end{array}\right]$?
Algebren: is there a scalar C

$$
\left[\begin{array}{l}
1 \\
2
\end{array}\right]=c \cdot\left[\begin{array}{l}
2 \\
4
\end{array}\right] \text { ? Yes, } \quad 0=1 / 2
$$

ls $\left[\begin{array}{c}1 \\ -2\end{array}\right]$ in the span of $\left[\begin{array}{l}2 \\ 4\end{array}\right]$?
$\left[\begin{array}{l}1 \\ -2\end{array}\right]=c \cdot\left[\begin{array}{l}2 \\ 4\end{array}\right]$? No $\left[\begin{array}{c}1 \\ -2\end{array}\right]$ is not in span.

Span
Let $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$ be a set of vectors in \mathbb{R}^{n}. We define
$\operatorname{span}\left\{\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}\right\}=$ set of all linear combinations of $\vec{v}_{1}, \vec{v}_{2}, \ldots, \vec{v}_{m}$

Is $\left[\begin{array}{r}4 \\ -2\end{array}\right]$ in the span of $\left[\begin{array}{r}2 \\ -4\end{array}\right]$ and $\left[\begin{array}{l}1 \\ 1\end{array}\right]$?
Is tore cit. $\left[\begin{array}{c}4 \\ -2\end{array}\right]=C_{1}\left[\begin{array}{c}2 \\ -4\end{array}\right]+c_{3}\left[\begin{array}{l}1 \\ 1\end{array}\right]$
in Lecture 4
Linear System. For Now Guess! $\quad c_{1}=1, \sigma_{2}=2$.

More Precise Definition

Definition

Let $v_{1}, v_{2}, \ldots, v_{p}$ be vectors in \mathbf{R}^{n}. The span of $v_{1}, v_{2}, \ldots, v_{p}$ is the collection of all linear combinations of $v_{1}, v_{2}, \ldots, v_{p}$, and is denoted $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$. In symbols:
$\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}=\left\{x_{1} v_{1}+x_{2} v_{2}+\cdots+\left.x_{p} v_{p}\right|^{\nmid} x_{1}, x_{2}, \ldots, x_{p}\right.$ in $\left.\mathbf{R}\right\}$.
Synonyms: $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is the subset spanned by or generated by $v_{1}, v_{2}, \ldots, v_{p}$.

This is the first of several definitions in this class that you simply must learn. I will give you other ways to think about Span, and ways to draw pictures, but this is the definition. Having a vague idea what Span means will not help you solve any exam problems!

Span in \mathbb{R}^{2}
Drawing a picture of $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is the same as drawing a picture of all linear combinations of $v_{1}, v_{2}, \ldots, v_{p}$.
span ofesingle vector ic a line.

if \vec{v} and \vec{c} are not parallel then the span is able $\mathbb{R} 2$.

if $\overrightarrow{\vec{v}}$ and $\vec{\omega}$ are peradlel.
then the open is aline

Span in \mathbb{R}^{2}
Drawing a picture of $\operatorname{Span}\left\{v_{1}, v_{2}, \ldots, v_{p}\right\}$ is the same as drawing a picture of all linear combinations of $v_{1}, v_{2}, \ldots, v_{p}$.

$$
\stackrel{\rightharpoonup}{0} \times \vec{v}
$$

$$
\vec{w} \notin \operatorname{span}\{\vec{v}\}
$$

is a line

$$
\vec{v} \in \operatorname{span}\{w\}
$$

Span in \mathbb{R}^{3}

Span in \mathbb{R}^{3}

Span in \mathbb{R}^{3}

Span in \mathbb{R}^{3}

Span in \mathbb{R}^{3}
$\operatorname{Span}\{v\}$

$\operatorname{Span}\{v, w\}$

Span in \mathbb{R}^{3}

Span in \mathbb{R}^{3}

Case l \vec{u} is not in the pare $\operatorname{Span}\{u, v, w\}$
is not in
b
$\vec{u} \in \operatorname{span}\{v \cdot w\}$
then span $\{\vec{u} \cdot \vec{v}, \vec{w}\}$ is the $1 \mathbb{R}^{3}$
$\operatorname{Span}\{v, w\}$

if \vec{u} is in the span $\{v, w\}$
$\operatorname{span}\{u \cdot v, w\}$ is the same as $\operatorname{span}\{v, w\}$

Span in \mathbb{R}^{3}

uble \mathbb{R}^{3} spece \leftarrow

if $\vec{v} \in \operatorname{span}\{\vec{v} . \vec{u}, \vec{w}\}$

Thin. $\vec{v}=a_{1} \vec{u}+a_{2} \vec{w}$

$$
\begin{aligned}
\vec{x} & =c_{1} \vec{u}+c_{2} \vec{w}+c_{3} \vec{v} & & \\
& \left.=c_{1} \vec{u}+c_{2} \vec{u}\right)+c_{3}\left(a_{1} \vec{u}+a_{2} \vec{u}\right) & \text { if } & \vec{x} \in \operatorname{spen}\{\vec{u} \cdot \vec{w}\} \\
& =\left(c_{1}+c_{3} a_{1}\right) \vec{u} & & \vec{x}=c_{1} \cdot \vec{u}+c_{2} \cdot \vec{w}=\overrightarrow{0}+\cdots=0 \cdot \vec{v}+c_{1} \cdot \vec{u}+c \cdot \vec{w} \\
& & & \Rightarrow \vec{x} \in \operatorname{span}\{\vec{v} \cdot \vec{u}, \vec{w}\}
\end{aligned}
$$

is a L.C. of \vec{u}. $\vec{\omega}$ τ is at helofal
the span isctill a plane

Span in \mathbb{R}^{3}

white opece is not the span

Span $\{v, w\}$
\downarrow
\uparrow the punsle pent is the spocs

$\operatorname{Span}\{u, v, w\}$

Questions?

