Lecture 22
 Nonstandard Bases and Change of Bases

Dr. Ralph Chikhany

Strang Section 8.2 - The Matrix of a Linear Transformation and Section 8.3 - The Search for a Good Basis

Consider the vector $\left.\left[\begin{array}{l}2 \\ 5\end{array}\right]=2\left[\begin{array}{l}1 \\ 0\end{array}\right]+5\left[\begin{array}{l}0 \\ 1\end{array}\right]=\frac{2 \overrightarrow{e_{1}}+5 e_{2}}{\operatorname{sA}_{\mathbb{R}^{2}}=\left\{e_{1}, \vec{e}_{2}\right\}}\right\}$
But what if $B_{\pi^{2}}^{1}=\{\underbrace{[} \begin{array}{l}1 \\ 1\end{array}],\left[\begin{array}{c}-1 \\ 1\end{array}\right]\}$?
Need the coordinates of $\left[\begin{array}{l}2 \\ 5\end{array}\right]$ in terms of the new boris elements
old: $\left[\begin{array}{l}2 \\ 5\end{array}\right]=2\left[\begin{array}{l}1 \\ 0\end{array}\right]+5\left[\begin{array}{l}0 \\ 1\end{array}\right]$
nev:
$\left[\begin{array}{l}2 \\ 5\end{array}\right]=\alpha\left[\begin{array}{l}1 \\ 1\end{array}\right]+\beta\left[\begin{array}{c}-1 \\ 1\end{array}\right]$. Find α and β

$$
\Rightarrow
$$

solve system

Intro
Consider the vector $\left[\begin{array}{l}2 \\ 5\end{array}\right]$

$$
\left\{\begin{array}{lll}
2=\alpha-\beta & & \alpha=7 / 2 \\
5=\alpha+\beta & \text { solve } & \beta=3 / 2
\end{array}\right.
$$

old basis: $\left[\begin{array}{l}2 \\ 5\end{array}\right]=2\left[\begin{array}{l}1 \\ 0\end{array}\right]+5\left(\begin{array}{l}0 \\ 1\end{array}\right]$

Matrix? 」
new bor sit

$$
\begin{aligned}
& {\left[\begin{array}{l}
2 \\
5
\end{array}\right]=\frac{7}{2}\left[\begin{array}{l}
1 \\
1
\end{array}\right]+\frac{3}{2}\left[\begin{array}{c}
-1 \\
1
\end{array}\right]} \\
& {\left[\begin{array}{l}
2 \\
5
\end{array}\right]=\frac{7}{2} v_{1}+\frac{3}{2} v_{2}}
\end{aligned}
$$

Change of Basis

Change of Basis
Let $\vec{x} \in \mathbb{R}^{n}$, and let $\beta_{1}=\left\{\vec{v}_{1}, \ldots, \vec{v}_{n}\right\}$ and $\beta_{2}=\left\{\vec{w}_{1}, \ldots, \vec{w}_{n}\right\}$ be bases for \mathbb{R}^{n}. What are the coordinates of \vec{x} ?
unique $\longrightarrow \vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}$
解, c_{2}, \ldots, c_{n} are the coordinates of \vec{x} in β_{1}

Unique $\longrightarrow \vec{x}=d_{1} \vec{w}_{1}+d_{2} \vec{w}_{2}+\cdots+d_{n} \vec{w}_{n}$
$d_{1}, d_{2}, \ldots, d_{n}$ are the coordinates of \vec{x} in β_{2}
ex:

$$
\begin{aligned}
& {\left[\begin{array}{l}
2 \\
5
\end{array}\right]=2\left[\begin{array}{l}
1 \\
0 \\
e_{1}
\end{array}\right]+5\left[\begin{array}{c}
0 \\
1 \\
e_{2}
\end{array}\right] \text { uniquely when } \beta_{1}=\left\{\vec{e}_{1}, e_{2}\right\}} \\
& {\left[\begin{array}{l}
2 \\
5
\end{array}\right]=\frac{7}{2}\left[\begin{array}{l}
1 \\
1 \\
v_{1}
\end{array}\right]+\frac{3}{2}\left[\begin{array}{c}
-1 \\
1 \\
v_{2}
\end{array}\right] \text { uniquely when } \beta_{2}=\left\{\vec{v}_{1}, v_{2}\right\}}
\end{aligned}
$$

Change of Basis
(reprexintationc are unijue for a fixed bast, but \vec{x} is the same)

$$
\vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}=\vec{x}=d_{1} \vec{w}_{1}+d_{2} \vec{w}_{2}+\cdots+d_{n} \vec{w}_{n}
$$

Change of Basis

$$
\begin{gathered}
\vec{x}=c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n} \quad \vec{x}=d_{1} \vec{w}_{1}+d_{2} \vec{w}_{2}+\cdots+d_{n} \vec{w}_{n} \\
c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2}+\cdots+c_{n} \vec{v}_{n}=d_{1} \vec{w}_{1}+d_{2} \vec{w}_{2}+\cdots+d_{n} \vec{w}_{n} \\
{\left[\begin{array}{cccc}
\vec{v}_{1} & \vec{v}_{2} & \ldots & \vec{v}_{n}
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2} \\
\vdots \\
c_{n}
\end{array}\right]=\left[\begin{array}{llll}
\vec{w}_{1} & \vec{w}_{2} & \ldots & \vec{w}_{n}
\end{array}\right]\left[\begin{array}{c}
d_{1} \\
d_{2} \\
\vdots \\
d_{n}
\end{array}\right]} \\
V \vec{c}=W \vec{d}
\end{gathered}
$$

old coeff. $e \quad \vec{c}=V^{-1} W \vec{d} \rightarrow$ wer cocft
new weff $\longleftarrow \vec{d}=W^{-1} V \vec{c} \rightarrow$ dd coeff

Example

Change of basis matrix from β_{1} to β_{2} :
ex: $\left[\begin{array}{c}-13 \\ 3\end{array}\right]=2\left[\begin{array}{c}-9 \\ 1\end{array}\right]-\left[\begin{array}{c}-5 \\ -1\end{array}\right]=201+(-1) v_{2}$

Goal: conf of $\left[\begin{array}{c}-13 \\ 3\end{array}\right]$ in β_{2} ?

$$
\begin{aligned}
& \text { basis conf bari } \quad \Rightarrow\left[\begin{array}{l}
d_{1} \\
\text { mavis }
\end{array}\right]\left[\begin{array}{cc}
1 & 3 \\
-4 & -5
\end{array}\right]^{-1}\left[\begin{array}{cc}
-9 & -5 \\
1
\end{array}\right]\left[\begin{array}{c}
c_{1} \\
c_{2}
\end{array}\right] \text { from } \beta_{i} \text { to } \\
& \text { matrix } \\
& \Rightarrow \vec{d}=\omega^{-1} \cup \bar{c}
\end{aligned}
$$

Example
Let $\beta_{1}=\left\{\left[\begin{array}{c}-9 \\ 1\end{array}\right],\left[\begin{array}{l}-5 \\ -1\end{array}\right]\right\}$ and $\beta_{2}=\left\{\left[\begin{array}{c}1 \\ -4\end{array}\right],\left[\begin{array}{c}3 \\ -5\end{array}\right]\right\}$

$$
\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 3 \\
-4 & -5
\end{array}\right]^{-1}\left[\begin{array}{cc}
-9 & -5 \\
1 & -1
\end{array}\right]\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]
$$

muse kshortant

$$
\begin{aligned}
& \text { Manse } \left.\begin{array}{l}
\text { Lshortant } \\
d_{1}
\end{array}\right]=\underbrace{\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]}_{\left[\begin{array}{cc}
-5 / 7 & -3 / 7 \\
4 / 7 & 1 / 7
\end{array}\right]\left[\begin{array}{cc}
-9 & -5 \\
1 & -1
\end{array}\right]} \\
& {\left[\begin{array}{l}
d_{1} \\
d_{2}
\end{array}\right]=\left[\begin{array}{l}
c_{1} \\
-5 \\
c_{2}
\end{array}\right]}
\end{aligned}
$$

change of basis matrix from β_{1} to β_{2}

What does this mean?
Old: $\left[\begin{array}{c}-13 \\ 3\end{array}\right]=\underset{c_{1}}{2}\left[\begin{array}{c}-9 \\ 1\end{array}\right]+\underset{c_{2}}{(-11)}\left[\begin{array}{l}-5 \\ -1\end{array}\right]$
new: $\left[\begin{array}{l}d_{1} \\ d_{2}\end{array}\right]=\left[\begin{array}{cc}6 & 4 \\ -5 & -3\end{array}\right]\left[\begin{array}{c}2 \\ -1\end{array}\right]=\left[\begin{array}{c}d_{1} \\ d_{1} \\ -7 \\ d_{d_{2}}\end{array}\right]$
check:

$$
8\left[\begin{array}{c}
1 \\
-4
\end{array}\right]+(-7)\left[\begin{array}{c}
3 \\
-5
\end{array}\right]=\left[\begin{array}{c}
-13 \\
3
\end{array}\right]
$$

Example
Let $\beta_{1}=\left\{\left[\begin{array}{c}-9 \\ 1\end{array}\right],\left[\begin{array}{l}-5 \\ -1\end{array}\right]\right\}$ and $\beta_{2}=\left\{\left[\begin{array}{c}1 \\ -4\end{array}\right],\left[\begin{array}{c}3 \\ -5\end{array}\right]\right\}$
Change of basis from β_{2} to β_{1}
Repeat the work boy treating vector in β_{2} as "old" and vector in β_{1} as "nev".
we end up with matrix: $\left[\begin{array}{cc}-3 / 2 & -2 \\ 5 / 2 & 3\end{array}\right]$

$$
\underset{A=M}{\text { Note: }}=\left[\begin{array}{cc}
6 & 4 \\
-5 & -3
\end{array}\right] \stackrel{\beta_{1} \rightarrow \beta_{2}}{\stackrel{\text { invesss! }}{\rightleftarrows}} M_{\beta_{2} \rightarrow \beta_{1}}^{\rightleftarrows}=\left[\begin{array}{cc}
-3 / 2 & -2 \\
5 / 2 & 3
\end{array}\right]=A^{-1}
$$

Not:

