Linear Algebra

Lecture 20
 Singular Value Decomposition

Dr. Ralph Chikhany

Quit 9
QT. $\quad A=\left[\begin{array}{lll}2 & \vdots & 4 \\ * & 5 & @ \\ \% & \# & 2\end{array}\right]$
$\lambda_{1}=\lambda_{2}=6 \quad$ What is λ_{3}

$$
\begin{align*}
& \operatorname{det}(A)=\pi \lambda_{i} \quad \text { reason } \quad A=x^{-1} \wedge \lambda^{=\operatorname{diag}}\left(\left[\begin{array}{lll}
\lambda_{1} & & \\
& \lambda_{2} & \\
& \lambda_{3}
\end{array}\right]\right) \\
& \uparrow x \\
& \operatorname{det}(\Lambda)=\lambda_{1} \lambda_{2} \cdots \lambda_{n} \quad \operatorname{det}\left(x^{-1}\right) \operatorname{det}(x)=1 \\
& \operatorname{det}(A)=\operatorname{det}\left(X^{-1}\right) \operatorname{det}(\Lambda) \operatorname{det}(x) \\
& =\operatorname{det}(\Lambda) \\
& \operatorname{det}\left(x_{1}^{-1} x\right) \\
& =\lambda_{1} \cdots \lambda_{n} \tag{det}
\end{align*}
$$

B is a 3×3 matin. vector space.
V_{1}, V_{2} are. eigenvalue $=2 \rightarrow C_{1} V_{1}+C_{2} V_{2}$ is still ejenvector of B
w are eigenvale $-3 \quad 4 w, \quad B(4 w)=4 B W$
Remarks. for eigenculu $\lambda \quad=12 w=3(4 w)$ all ejenvectors is $\mathrm{Na} /(A-\lambda I)$ which is a vector space.

1. all $n \times n$ matrix have n eigenvalue S.

- This is because. $p(\lambda)=\operatorname{det}(A-\lambda I)$ is a n-th order potromial.

But it doesn't mean we have " n "- eigenvectors, (counting the basis) n - linear indeperdent eigenvectors.

- If we have "n" eigen-vector, $\vec{x}_{1} \ldots \vec{x}_{n} \quad \bar{X}=\left[\begin{array}{lll}\vec{x}_{1} & \cdots & \overrightarrow{x_{e}}\end{array}\right]$

$$
A=X^{-1} \wedge X \quad \underset{\text { matrix }}{\text { u }} A \text { can be dig y ondi End. }
$$

- If $\underset{\downarrow}{\lambda_{1}} ._{\downarrow} \lambda_{2} \ldots, \lambda_{\downarrow}$ fley are different from each often.
$x_{1} \cdots x_{2} \cdots x_{n}$ are linear independent!
- If A cant be dicjonlited. mears A hove two repeated eijenubles.

Example. $\quad B=\left[\begin{array}{ll}1 & 1 \\ & 1\end{array}\right] \quad P(\lambda)=\operatorname{det}(B-\lambda I)$
$=\operatorname{det}\left[\begin{array}{ll}1-\lambda & 1 \\ & 1-\lambda\end{array}\right] \quad$ (This upper dig)
$=(1-\lambda)^{2} \rightarrow \underbrace{\lambda_{1}=1}_{\text {repeated eigenvehe. }} \cdot \frac{\lambda_{2}=1}{1-\lambda}$

$$
C=\left[\begin{array}{lll}
1 & 1 & \\
& 1 & \\
& & 2
\end{array}\right] \rightarrow \underbrace{\lambda_{1}=1, \lambda_{2}=1 . \quad \lambda_{3}=2}_{\text {repeated eigenvalue }}
$$

Why we cant diagonalize B and C

$$
B-I=\left[\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right] \rightarrow \text { rank is } 1, \operatorname{dim}\left|N_{u}\right|(B-I) \mid=1
$$

\Rightarrow only "1" eicenverting the basis
\Rightarrow only 1 eigenvector but not 2

$$
\begin{aligned}
& \left.C-I=\left[\begin{array}{lll}
0 & 1 & \\
& 0 & \\
& & 1
\end{array}\right] \rightarrow \operatorname{rank} \text { is } 2 \rightarrow \operatorname{dim}\left(N_{u}\right)(C-I)\right)=1 \\
& \left.C-2 I=\left[\begin{array}{ccc}
-1 & 1 & \\
& -1 & \\
& & 0
\end{array}\right] \rightarrow \operatorname{rank} \text { is } 2 \rightarrow \operatorname{dim}\left(N_{u}\right)(C-I)\right)=1
\end{aligned}
$$

\rightarrow "2" eikon rector but rot 3
Matrix .C $\quad \lambda_{1}=\lambda_{2}=1 \quad, \quad \lambda_{3}=2$
) I want ejenvahe repeated 2-fimes can provide 2-eigen
$\left[\begin{array}{lll}1 & & \\ & 1 & \\ & & 2\end{array}\right] \rightarrow 2$ eigenvectors of eifen value 1 Veftons!
\rightarrow 1eigenvecton of eigencule 2.
"Digondize" means repent times $=$ "number" of eigen vectors.
but for C matins
repent times $>$ number of eigen vectors

$$
\lambda_{1}=\lambda_{2}=1 \quad \text { ore eigen vectors. }
$$

Symmetric matrix $A=A^{\top} \rightarrow \vec{x}^{\top} A \vec{x}$ is

$$
\vec{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right) \rightarrow \text { reed number }
$$

- A can be diagnolited! Sudanic function
- $x_{1} \cdots x_{1}$ (eigenvector) orfosona) $\Rightarrow A=x \wedge x^{-1}$
- $x \wedge x^{\top}$

ex. $x_{1}=\left[\begin{array}{c}1 / \pi \\ y / \pi\end{array}\right] \rightarrow x_{1} x_{1}^{\top}=\left[\begin{array}{cc}1 / 2 & 1 / \pi \\ 1 / 2 & 1 / 2\end{array}\right] \leftarrow \operatorname{rank}$ is $1 \quad \vec{a}=\left[\begin{array}{l}a_{1} \\ \vdots \\ a_{n}\end{array}\right)$

$$
\frac{\vec{a}^{\top} A \vec{a}}{\uparrow}=\lambda_{1}\left(x_{1}^{\top} \vec{a}\right)^{2}+\lambda_{2}\left(x_{2}^{\top} \vec{a}\right)^{2}+\cdots+\lambda_{n}\left(X_{2}^{\top} \vec{a}\right)^{2}
$$

Sudefic function ex. $\quad x_{1}=\binom{1 / \sqrt{2}}{1 / \sqrt{2}} \quad$ Then $\left(x_{1}^{\top} a\right)^{2}=\left(1 / \sqrt{2} a_{1}+4 / \sqrt{2} a_{2}\right)^{2}$. respect to $a_{1} \cdot a_{n}$

Positive. Definite Matrix.
For matrix $A=A^{\top}, \quad \lambda r \cdots \lambda_{n}>0$

$$
\Leftrightarrow a^{\top} A a=\sum_{\text {positive are }}^{\lambda_{i}} \frac{\left(x_{i}^{\top} a\right)^{2}}{\text { square function }} \geqslant a^{\top} A a \geqslant 0
$$

Remark. A is police deffrite.

$$
\vec{a}^{\top} A \vec{a}=0 \Leftrightarrow \vec{a}=\overrightarrow{0}
$$

Strang Chapter 7 - The Singular Value Decomposition
svD

SVD \rightarrow holds for all matin

"diagonal" matrix

$$
\begin{array}{rlrl}
A^{T} A & =\left(U \Sigma V^{T}\right)^{T}\left(U \Sigma V^{T}\right) & A A^{T} & =\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T} \\
& =V \Sigma^{T} U^{T} U \Sigma V^{T} & =U \Sigma V^{T} V \Sigma^{T} U^{T} \\
& =V \Sigma^{T} \Sigma V^{T} & =U \Sigma \Sigma^{T} U^{T}
\end{array}
$$

SVD
$A=U \Sigma V^{T}$. don't forget the Tracopre Lre
Eey idea. Evenif A is rectanguler.
$\underbrace{A^{\top} A^{n \times n}}_{n \times n}$ and $\underbrace{A m \times n}_{m \times m} A^{\frac{n}{x}}$ ano sequare and symmetric.

$$
\begin{aligned}
& \left(A^{\top} A\right)^{\top}=A^{\top}\left(A^{\top}\right)^{\top}=A^{n \times n} A . \Rightarrow A^{\top} A \text { is squmverne!! } \\
& (A B)^{\top}=B^{\top} A^{\top}
\end{aligned}
$$

Assame we have $A=U \Sigma V^{\top}$

$$
\begin{aligned}
& A^{\top} A=\left(\widetilde{U} \Sigma V^{\top}\right)^{\top}\left(U \Sigma V^{\top}\right)^{T h i s} \text { indentity matix } \text { for uis ortiogal } \\
&=\left(\left(V^{\top}\right)^{\top} \Sigma^{\top} U^{\top}\right)\left(U \Sigma U^{\top}\right) \\
&(A B C)^{\top}=C^{\top} B^{\top} A^{\top}
\end{aligned}
$$

$$
A^{\top} A
$$

$$
A A^{\top}=(U) \Sigma \Sigma^{\top}\left(U^{\top}\right)
$$

\rightarrow diggondization of squmetric matrix $A A^{\top}$.
$U=\left[u_{1} \cdots u_{n}\right] . u_{1} \ldots u_{n}$ is eigencector of $A A^{\top}$.
siee!!
Example. $A=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]=\left[\begin{array}{ll}2 \times 2 \\ 1 & 0 \\ 0 & 1\end{array}\right]\left[\begin{array}{ccc}\pi & 2 \times 4 & 0 \\ 0 & \sqrt{2} & 0 \\ 0\end{array}\right]\left[\begin{array}{ccc}\pi / 2 & 0 & \pi / 2 \\ 0 / \pi & \pi / 2 & 0 \\ -\pi / 2 \\ 0 & 0 & \pi / 2\end{array}\right]$

Example $A=\left[\begin{array}{llll}1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1\end{array}\right]=\frac{\left[\begin{array}{ll}2 \times 2 \\ 1 & 0 \\ 0 & 1\end{array}\right]}{4}\left[\begin{array}{cccc}\sqrt{2} & 0 & 0 & 0 \\ 0 & \sqrt{2} & 0 & 0\end{array}\right]\left[\begin{array}{ccc}\pi / 2 & 0 & \pi / L \\ 0 & 0 \\ -\pi / 2 & 0 & 0 \\ 0 & \pi / 2 & 0 \\ 0 & -\sqrt{2} / 2 & 0 \\ 4 / 2\end{array}\right]$
(1) What is the size of $A^{4 \times 2} A, \quad \Gamma^{\top} \Sigma^{2 \times 4} \rightarrow 4 \times \mathbb{C}$,

$$
\begin{aligned}
& \begin{array}{rl}
2 \times 4 & 4 \times 2
\end{array} \\
& \Sigma^{T} \Sigma=\left[\begin{array}{cc}
\lambda^{2} & 0 \\
0 & \sqrt{\lambda^{2}} \\
0 & 0 \\
0 & 0
\end{array}\right]\left[\begin{array}{ccc}
\lambda^{2} & 0 & 0 \\
0 & \sqrt{2} \lambda_{2} & 0 \\
0
\end{array}\right]=\left[\begin{array}{cccc}
2^{\lambda^{2}} & 0 & 0 & 0 \\
0 & 2^{\lambda^{2}} & 0 & 0 \\
0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0
\end{array}\right] \\
& \Sigma \Sigma^{\top}=\left[\begin{array}{ccc}
\sqrt{2}^{\lambda_{1}} & 0 & 0 \\
0 & 0 \\
\sqrt{2}_{\lambda_{2}} & 0 & 0
\end{array}\right]\left[\begin{array}{cc}
\sqrt{2}^{\lambda_{1}} & 0 \\
0 & \sqrt{\lambda_{\lambda}} \\
0 & 0 \\
0 & 0
\end{array}\right]=\left[\begin{array}{cc}
2^{\lambda_{1}^{2}} & 0 \\
0 & 2 \lambda_{1}^{2}
\end{array}\right]_{A A}^{A^{\top} A}
\end{aligned}
$$

$A^{\top} A$ have eigenvalue λ_{1}^{2}. λ_{i}

If My $\Sigma=\left[\begin{array}{cccc}\lambda_{1} & 0 & 0 & 0 \\ 0 & \lambda_{2} & 0 & 0\end{array}\right]$

$$
\Rightarrow \text { Eigenvalue of } \Sigma^{\top} \Sigma \boldsymbol{\Sigma}^{\top} \boldsymbol{\Sigma}^{\lambda_{1}^{2}}, \lambda_{2}^{2}, 0,0 \quad 4 \times 4 \text { matrix }
$$

a new understanding of $\operatorname{rank}\left(A^{\top} A\right)=\operatorname{rank}\left(A A^{\top}\right)=\operatorname{rank}(T)$
(1) Recall if X. Y are invertible marti $=\operatorname{rank}(A)$

$$
\operatorname{rank}(A x)=\operatorname{rank}(Y A)=\operatorname{rank}(A)
$$

we know $\operatorname{rank}(A B) \leqslant \operatorname{rank}(A)$ rank $(A B) \leq \operatorname{ank}(B)$

$$
\begin{aligned}
\Rightarrow & \operatorname{rank}(A x)
\end{aligned} \quad \operatorname{rank}(A) \quad \operatorname{rank}(A)=\operatorname{rank}\left(A \times x^{-1}\right) \leqslant \operatorname{rank}(A x) \quad\left\{\begin{array}{r}
\operatorname{rank}(A) \\
=\operatorname{rank}(A x)
\end{array}\right.
$$

$$
A={\underset{\sigma}{V}}_{V}^{v} v^{\top}
$$

$m \times m$ orthogoml
U. V^{\top} are both invertible.

$$
\begin{aligned}
\Rightarrow \operatorname{rank}(A)=\operatorname{rank}(\Sigma) & =\operatorname{rank}\left(\Sigma^{\top} \Sigma\right)=\operatorname{rank}\left(A^{\top} A\right) \\
& =\operatorname{rank}\left(\Sigma^{\top} \Sigma\right)=\operatorname{rank}\left(A A^{\top}\right) \\
& \downarrow
\end{aligned}
$$

number of non-zeono in the digont of Σ

Example
Suppose: $A \in \mathbb{M}_{s \times 10} ; \operatorname{rk}(A)=2$
Then:

$$
\operatorname{rk}(\underbrace{A A^{\top}}_{5 \times 5})=2
$$

2 nonzero e-values of $A A^{+}$
$\Rightarrow 3$ zero e-values (counting multeplicitios)

2 nonzero e-values of $A^{\top} A$
$\Rightarrow 8$ zeroceralues (counting multuplicitis)
ignoring multoplicities, the e-values of $A A^{\top}$ and $A^{\top} A$ are the same

The Eigenvalues of $A^{T} A$ and $A A^{T}$

$$
\Sigma^{T} \Sigma=\left[\begin{array}{cccc}
\sigma_{1}^{2} & & & \\
& \ddots & & \\
& & \sigma_{r}^{2} & \\
& & & 0
\end{array}\right] \quad \Sigma \Sigma^{T}=\left[\begin{array}{llll}
\sigma_{1}^{2} & & & \\
& \ddots & & \\
& & \sigma_{r}^{2} & \\
& & & 0
\end{array}\right]
$$

Therefore, the matrices $A^{T} A$ and $A A^{T}$ have the same nonzero eigenvalues. $\sigma_{1}=\sqrt{\lambda_{1}}$, where λ_{1} is the largest eigenvalue of $A^{T} A\left(\right.$ or $\left.A A^{T}\right)$
$\sigma_{r}=\sqrt{\lambda_{r}}$, where λ_{r} is the smallest (nonzero) eigenvalue of $A^{T} A\left(\right.$ or $\left.A A^{T}\right)$

Example

$$
\begin{aligned}
& A=U \Sigma V^{T} \Longrightarrow A V=U \Sigma \\
& A \vec{v}_{1}=\sigma_{1} \vec{u}_{1} \Longrightarrow \vec{u}_{1}=\frac{1}{\sigma_{1}} A \vec{v}_{1} \\
& A \vec{v}_{2}=\sigma_{1} \vec{u}_{2} \Longrightarrow \vec{u}_{2}=\frac{1}{\sigma_{2}} A \vec{v}_{2} \\
& \vdots \\
& A \vec{v}_{r}=\sigma_{1} \vec{u}_{r} \Longrightarrow \vec{u}_{r}=\frac{1}{\sigma_{r}} A \vec{v}_{r}
\end{aligned}
$$

The remaining $\vec{u}_{r+1}, \ldots, \vec{u}_{m}$ are determined as eigenvectors of $A A^{T}$ corresponding to zero eigenvalue.

How to find the SVD Decomposition?

1. Σ is the same size as A and has the singular values σ on its diagonal. The singular values are the square roots of the nonzero eigenvalues of $A^{T} A$ or $A A^{T}$.
2. V contains the eigenvectors of $A^{T} A$.
3. U contains the eigenvectors of $A A^{T}$. But we will find the vectors \vec{u} corresponding to nonzero eigenvalues using the SVD.

Example

Bases of the Four Fundamental Subspaces using the SVD

The Matrix V

$$
\begin{aligned}
& A^{T} A=V \Sigma^{T} \Sigma V^{T} \\
& A^{T} A \vec{v}_{1}=\sigma_{1}^{2} \vec{v}_{1} \\
& \left.A^{T} A \vec{v}_{2}=\sigma_{2}^{2} \vec{v}_{2}\right\}\left\{\vec{v}_{1}, \ldots, \vec{v}_{r}\right\} \perp\left\{\vec{v}_{r+1}, \ldots, \vec{v}_{n}\right\} \\
& \begin{array}{l}
\vdots \\
A^{T} A \vec{v}_{r}=\sigma_{r}^{2} \vec{v}_{r}
\end{array} \int\left\{\begin{array}{l}
\left\{\vec{v}_{1}, \ldots, \vec{v}_{r}\right\} \text { orthonormal basis for Row } A
\end{array}\right. \\
& A^{T} A \vec{v}_{r+1}=\sigma_{r+1}^{2} \vec{v}_{r+1}=\overrightarrow{0} \\
& \vec{v}_{r+1}, \ldots, \vec{v}_{n} \text { span } \operatorname{Nul}\left(A^{T} A\right)=\operatorname{Nul} A \\
& A^{T} A \vec{v}_{n}=\sigma_{n}^{2} \vec{v}_{n}=\overrightarrow{0} \quad \int\left\{\vec{v}_{r+1}, \ldots, \vec{v}_{n}\right\} \text { orthonormal basis for Nul } A
\end{aligned}
$$

$$
\begin{aligned}
& A A^{T}=U \Sigma \Sigma^{T} U^{T} \\
& A A^{T} \vec{u}_{1}=\sigma_{1}^{2} \vec{u}_{1} \\
& A A^{T} \vec{u}_{2}=\sigma_{2}^{2} \vec{u}_{2} \\
& \vdots \\
& A A^{T} \vec{u}_{r}=\sigma_{r}^{2} \vec{u}_{r} \\
& A A^{T} \vec{u}_{r+1}=\sigma_{r+1}^{2} \vec{u}_{r+1}=\overrightarrow{0} \\
& \vdots \\
& A A^{T} \vec{u}_{m}=\sigma_{m}^{2} \vec{u}_{m}=\overrightarrow{0} \quad \begin{array}{l}
\left\{\vec{u}_{1}, \ldots, \vec{u}_{r}\right\} \perp\left\{\vec{u}_{r+1}, \ldots, \vec{u}_{m}\right\} \\
\left\{\begin{array}{l}
\text { a }
\end{array}\right. \\
\vec{u}_{r+1}, \ldots, \vec{u}_{m} \text { span } \operatorname{Nul}\left(A A^{T}\right)=\operatorname{Nul} A^{T} \\
\left\{\vec{u}_{r+1}, \ldots, \vec{u}_{m}\right\} \text { orthonormal basis for } \operatorname{Nul} A^{T}
\end{array}
\end{aligned}
$$

Summary and Examples

$\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{r} \quad$ is an orthonormal basis for the column space $\boldsymbol{u}_{r+1}, \ldots, \boldsymbol{u}_{m}$ is an orthonormal basis for the left nullspace $\boldsymbol{N}\left(A^{\mathrm{T}}\right)$
$\boldsymbol{v}_{1}, \ldots, \boldsymbol{v}_{r} \quad$ is an orthonormal basis for the row space
$\boldsymbol{v}_{r+1}, \ldots, \boldsymbol{v}_{n}$ is an orthonormal basis for the nullspace $\boldsymbol{N}(A)$.

$$
\left[\begin{array}{ll}
1 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
4 & 0 \\
0 & 1
\end{array}\right]\left[\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right]
$$

$$
\frac{\left[\begin{array}{rr}
1 & 3 \\
3 & -1
\end{array}\right]}{\sqrt{10}}\left[\begin{array}{rr}
\sqrt{50} & 0 \\
0 & 0
\end{array}\right] \frac{\left[\begin{array}{rr}
1 & 2 \\
2 & -1
\end{array}\right]}{\sqrt{5}}
$$

