Lecture 19
 Symmetric and Positive Definite Matrices

Dr. Ralph Chikhany

Reap
eigen vector

$$
A \otimes \vec{x}=\vec{\lambda} \rightarrow \text { eigenvalue } \quad x \in \mathbb{R}^{n} . \quad A \in \mathbb{R}^{n \times n} \quad \lambda \in \mathbb{R}
$$

- λ is the station to $P(\lambda)=\operatorname{det}(\lambda I-A)=0 \quad \lambda$ may be duplex number!
x is in the $M_{l}(A-\lambda I)$
- If we have n diffinict eijen wake $\lambda_{1} \cdots \lambda_{n}$

1. eigenvectors $x_{1} \cdots x_{n}$ are linear indepionelle $x=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]$ is imerititle
2. $A=\frac{X}{L} \Delta \xrightarrow{x^{-1}} \quad \Lambda=\operatorname{diog}\left(\lambda_{1} \cdots \lambda_{n}\right)$
$x=\left[x_{1} \cdots x_{n}\right]$ matrix of all eigenvectors
3. distinct ejeenviches mean. $\operatorname{dim}\left(N_{u l}(A-\lambda I)\right)$ is always 1 .
L the equation $A x=\lambda x$ only have a "single" solution "Sirate" \Leftrightarrow Same direction
Example. $A=\left(\begin{array}{ccc}4 & -1 & 6 \\ 2 & 1 & 6 \\ 2 & -1 & 8\end{array}\right)$ cir even solidi. $\overrightarrow{\vec{u}}$

But this still can be dicgordized!
Example $\quad B=\left(\begin{array}{ll}1 & 1 \\ 0 & 1\end{array}\right) \quad P(\lambda)=\operatorname{dot}\left(\left(\begin{array}{cc}1-\lambda & 1 \\ & 1-\lambda\end{array}\right)\right)=(1-\lambda)^{2} \quad . \frac{\lambda_{1}=1}{T_{0} 0} \frac{\lambda_{2}=1}{\text { cone eigencodre }}$
but $B-\lambda I=\left(\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right) \quad \operatorname{Nal}(B-I)=\operatorname{span}\left\{\left(\left(_{0}^{1}\right)\right\}\right.$
This is a 2×2 only have 1 eigenvectors! So we can'f do digorodization!
(Not Required!) All Natrix is not digandizable will similar to B (Jordan Form)
Similar Matrix A and B are similar mean s

$$
A=\bar{X} B \underline{X}^{-1} \quad(x \text { is invertible })
$$

1. A and B have the came eigenvalue

$$
A x=\lambda x \Rightarrow \bar{X} B X^{-1} x=\lambda x \Rightarrow B\left(\Sigma^{-1} x\right)=\lambda\left(\bar{X}^{-1} x\right)
$$

if x is A^{\prime} s eigenvector, the $Z^{-1} x$ is B^{\prime} e eigenvector!

Recap

$$
\begin{array}{ll}
\mathbb{R}^{n} & \text { eigen value eigenvector } \\
\left.\Delta \vec{x}=\lambda \vec{x} \quad(\vec{d} \cdot \vec{x})^{\prime}\right)
\end{array}
$$

- λ is the Solution to def $(A-\lambda I)=0 \longrightarrow x \in \operatorname{Nul}(A-\lambda I)$
n-th order polynoin. $1 \operatorname{Hdim}\left(N_{u} \mid(A-\lambda I)\right)$ " $\measuredangle \quad$ How many eigenvectors
might be complex $\leftarrow n$ solutions we have for eigenvalue λ.
$n \times n$ matrix will always have n eigenvalues.
- If the n eigenvalues are different. $\vec{x}_{1} \cdots \vec{x}_{n} \quad n$-eigenvectors will become linear independent. $\bar{X}=\left[\vec{x}_{1}, \cdots \overrightarrow{x_{n}}\right]$ is invertible

Example 1) $A=\left[\begin{array}{ll}1 & \\ & 1\end{array}\right] P(\lambda)=\operatorname{det}\left(\left(\begin{array}{ll}1-\lambda & \\ 1-\lambda\end{array}\right)\right)=(1-\lambda)^{2} \Rightarrow \begin{aligned} & 2 \times 2\end{aligned} \quad \begin{aligned} & \text { Inatiri have 2eigen }\end{aligned}$
2) $B=\left[\begin{array}{ll}1 & 1 \\ & 1\end{array}\right] P(\lambda)=\operatorname{det}\left(\left(\begin{array}{cc}1-\lambda & 1 \\ & 1-\lambda\end{array}\right)\right)=(1-\lambda)^{2} \cdot \Rightarrow \lambda_{1}=1 . \quad \lambda_{2}=1$

Eigenvector of Matrix $A=\operatorname{Nul}(A-I)=\operatorname{Nal}\left(\left[\begin{array}{ll}0 & 0 \\ 0 & 0\end{array}\right]\right) \leftarrow \operatorname{dim}$ is $2 / 2$ eigenvector
Eigenvector of Matrix B
Eigenvector of Matrix $B=\operatorname{Nu}(B-I)=\operatorname{Nul}\left[\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right]\right\}\left[\begin{array}{ll}{[\operatorname{san}}\end{array}\left[\begin{array}{l}0 \\ 0\end{array}\right] \leftarrow \operatorname{dim}\right.$ is $1 / 1$ eigenvector.
A - have 2-ejencicators. So we can form the metrix $\mathbb{X} \Rightarrow A$ is diayonditable.
B-have 1 - eijen vector \cdots can'f $\quad . \quad \bar{X} \Rightarrow B$ is Uodigonalizable.
(Not Required) all matrix cant he diagondizod will similar to matrix B
Similar Matrix. $A=\bar{X} B \bar{X}^{-1}$. A and B are Similar!. (Jordan Form)

- They have the save dizen value but they don't have the save eigenvector!

2. If we know $A=X B X^{-1}$. How fo find X
A^{\prime} 's eigenvector are $\left[\begin{array}{llll}a_{1} & a_{2} & \cdots & a_{n}\end{array}\right]$
B^{\prime} 's eigenvector are $\left[\begin{array}{llll}b_{1} & b_{1} & \cdots & b_{n}\end{array}\right]$

$$
\begin{aligned}
& =\left[x^{-1} a_{1} \cdots X^{-1} a_{n}\right] \\
& =x^{-1}\left[a_{1} \cdots a_{n}\right]
\end{aligned}
$$

$$
\left.\begin{array}{l}
\Rightarrow x^{-1}\left[\begin{array}{lll}
a_{1} & a_{1} & \cdots \\
a_{n}
\end{array}\right]=\left[b_{1} \cdots b_{n}\right.
\end{array}\right]
$$

3. $\operatorname{Tr}(A)=\operatorname{Tr}(B)=d_{1}+\cdots+\lambda_{n}$

$$
\operatorname{det}(A)=\operatorname{det}(B)=\lambda_{1} \cdots \lambda_{n}
$$

Symmetric Matrix $A=A^{\top}$.

$$
A=\left[\begin{array}{lll}
1 & 0 & 1 \\
0 & 1 & 2 \\
1 & 2 & 3
\end{array}\right]
$$

(1) Symmetric Matrix will always have real ejonuater.
and it can be diggonlized
Motivation Qudratic function. $f\left(x_{1}, x_{2}\right)=a_{1} x_{1}^{2}+a_{2} x_{1}^{2}+a_{3} x_{1} x_{2}$

$$
\overrightarrow{A \in \mathbb{R}^{2 \times 2}}=\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right) \quad \vec{x}=\binom{x_{1}}{x_{2}} \in \mathbb{R}^{2}
$$

let's calculate. $x^{\top} A x=\left(\begin{array}{ll}\left(x_{1},\right. & x_{2}\end{array}\right)\left(\begin{array}{ll}a_{11} & 2 \times 2 \\ a_{12} \\ a_{21} & a_{22}\end{array}\right)\left(\begin{array}{l}2 x 1 \\ x_{1} \\ x_{2}\end{array}\right) \rightarrow|x|$ matrix x (noil number $)$

$$
\begin{aligned}
&=\left(x_{1}, x_{2}\right)\binom{a_{11} x_{1}+a_{22} x_{2}}{a_{21} x_{1}+a_{22} x_{2}}=x_{1}\left(a_{11} x_{1}+a_{12} x_{2}\right)+x_{2}\left(a_{21} x_{1}+a_{22} x_{2}\right) \\
& \text { let } a_{12}=a_{21}=\frac{1}{2} a_{3}!!!\leftrightarrow A \text { is symmetric } \\
&=a_{11} x_{1}^{2}+\left(a_{12}+a_{21}\right) x_{1} x_{2}+a_{22} x_{6}^{2}
\end{aligned}
$$

Symmetric Matrix \leftrightarrow Quadratic function.
Example $f\left(x_{1} \cdot x_{2}\right)=x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}=\left(x_{1}+x_{2}\right)^{2}$.

$$
x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}=\left(\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right)\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)\binom{x_{1}}{x_{2}}
$$

$$
A=\left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right), \quad \lambda_{1}=2 \quad x_{1}=\left[\begin{array}{c}
1 / \sqrt{2} \\
1 / \sqrt{2}
\end{array}\right] \quad\binom{1}{1} \quad \begin{array}{ll}
x_{2} & \lambda_{2}=0
\end{array} x_{2}=\left[\begin{array}{c}
1 \sqrt{2} \\
-1 / \sqrt{2}
\end{array}\right]\binom{1}{-1}
$$

$\bar{X}=\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right] \quad \begin{aligned} & \left.\text { (nomadize to unit vector!) } \quad \begin{array}{l}\text { is an orthogonal Matrix } x!! \\ \text { (nomadize to unit vector!) }\end{array}\right) \text { This is always }\end{aligned}$
$\bar{X}=\left[\begin{array}{cc}1 / \sqrt{2} & 1 / \sqrt{2} \\ 1 / \sqrt{2} & -1 / \sqrt{2}\end{array}\right] \quad \begin{aligned} & \left.\text { (nomanclize to mit vector!) } \quad \begin{array}{l}\text { is an orthogonal Matrix } \\ \text { (nomadize to unit vector!) }\end{array}\right) \text { This is always }\end{aligned}$ True for Symmetrix,
$x_{2}=(1 / \pi,-1 / \sqrt{2})$
Quadratic Function

$$
\begin{aligned}
& f\left(x_{1}, x_{2}\right)=x_{1}^{2}+2 x_{1} x_{1}+x_{2}^{2}=x^{\top} A x=x^{\top}\left(2 x_{1} x_{1}^{\top}+0 x_{2} x_{2}^{\top}\right) x \\
& =\underset{\text { real numbers }\left(x \cdot x_{1}\right)}{2 x^{\top} x_{1} x_{1}^{\top} x}+\underset{\text { ned number }}{0} \cdot \boldsymbol{x}^{\top} x_{2} x_{2}^{\top} x=2\left(x \cdot x_{2}\right) \quad \underset{\substack{\hat{x} \\
x_{1}}}{ }=\left(1 / \sqrt{2} \cdot\left(x \cdot x_{2}\right)^{2}\right. \\
& \text { just true } \\
& =2\left(1 / \sqrt{2} x_{1}+1 / \sqrt{2} x_{2}\right)^{2}+0\left(1 / \sqrt{2} x_{1}-1 / \sqrt{2} x_{2}\right)^{2} \\
& \uparrow \text { There are all square function! } \\
& \left(x_{1}+x_{2}\right)^{2}+0 \cdot\left(x_{1}-x_{2}\right)^{2} \\
& x_{1}^{\top} x_{2} \text { for vectiry } \\
& =x_{1}^{\top} x_{1} \\
& =\left(\begin{array}{ll}
x_{11} & x_{12}
\end{array}\right)\binom{\lambda x_{21}}{\lambda x_{22}} \\
& F \lambda x_{11} x_{21}+\lambda x_{12} x_{22}
\end{aligned}
$$

$$
\begin{aligned}
& A=X \wedge Z^{-1}=\mathbb{X} \wedge \mathbb{X}^{\top} \\
& =\left[\begin{array}{ll}
x_{1} & x_{2}
\end{array}\right]^{2} 10\left[\begin{array}{l}
x_{1}^{\top} \\
x_{2}^{\top}
\end{array}\right]=\left[\begin{array}{ll}
2 x_{1} & 0 x_{2}
\end{array}\right]\left[\begin{array}{l}
x_{1}^{\top} \\
x_{2}^{\top}
\end{array}\right] \\
& =2 x_{1} x_{1}^{\top}+0 x_{2} x_{2}^{x_{2}}{ }^{2 x_{1}}
\end{aligned}
$$

$$
\begin{aligned}
& \operatorname{det}(A-\lambda I) \\
& =\operatorname{det}\left(\begin{array}{cc}
1-\lambda & 1 \\
1 & 1-\lambda
\end{array}\right) \\
& =(1-\lambda)(1-\lambda)-|x| \\
& =\lambda^{2}-2 \lambda
\end{aligned}
$$

Symmetric Matrix. $A=A^{\top}$.
(1) if A is symmetric, Then A can always be diagonalized (provide proof on website) and A's eigenvalues are always real number!

Motivation!
Qudratic function. $\quad f(x)=x^{2}$
Example. $f(a, b)=a^{2}+2 a b+b^{2}=(a+b)^{2}$
check. $f(a, b)=(\underset{1 \times 2}{(b} a)\left(\begin{array}{ll}1 & 1 \\ 1 & 1 \\ 2 \times 2\end{array}\right)\binom{a}{b} \underset{2 \times 1}{ }=\vec{x}^{\top} A \vec{x}$

$$
=\left(\begin{array}{ll}
b & a
\end{array}\right)\binom{a+b}{a+b}=b(a+b)+a(a+b)=a^{2}+2 a b+b^{2}
$$

Diagonalize. $\left(\begin{array}{ll}1 & 1 \\ 1 & 1\end{array}\right) \quad \lambda_{1}=2, x_{1}=\binom{1}{1} \quad \lambda_{2}=0, \quad x_{2}\binom{1}{-1}$

$$
\begin{aligned}
& \underline{X}=\left[\begin{array}{ll}
x_{1}, & x_{2}
\end{array}\right]=\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad X^{-1}=\frac{1}{2}\left[\begin{array}{cc}
1 & 1 \\
1 & -1
\end{array}\right] \quad\left(\begin{array}{l}
\bar{X} \text { is earth lon!! } \\
x^{-1}=x^{\top}
\end{array}\right. \\
& \left(\begin{array}{ll}
1 & 1 \\
1 & 1
\end{array}\right)=\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right)\left(\begin{array}{ll}
2 & \\
& 0
\end{array}\right)\left(\begin{array}{cc}
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}}
\end{array}\right) \quad \begin{array}{l}
x^{-1}=x^{\top} \\
x^{\top}(A+B) x=x^{\top} A x
\end{array}
\end{aligned}
$$

$$
\begin{aligned}
& \begin{aligned}
f(a, b) & =(a, b)\left(\begin{array}{cc}
1 & 1 \\
1 & 1
\end{array}\right)\binom{b}{a}\binom{\text { "write quadratic function to }}{\text { sum of squares !!! }} \\
& =2 \cdot(a, b)\binom{\frac{1}{\sqrt{2}}}{\frac{1}{\sqrt{2}}}\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)\binom{b}{a}+0 \times(a, b)\left(\begin{array}{l}
\left(\frac{1}{\sqrt{2}}\right) \\
\left.-\frac{1}{\sqrt{2}}\right)
\end{array}\left(\frac{1}{\sqrt{2}},-\frac{1}{\sqrt{2}}\right)\binom{a}{b}\right.
\end{aligned} \\
& =\frac{1}{\sqrt{2}} a+\frac{1}{\sqrt{2}} b=\frac{1}{\sqrt{2} a+} \frac{1}{1} b \quad=\frac{1}{\sqrt{2}}-\frac{1}{\sqrt{c} b} \quad=\frac{1}{\sqrt{2}} a-\frac{1}{\sqrt{c}} b \\
& =2 \cdot\left(\frac{1}{\sqrt{2}} a+\frac{1}{\sqrt{2}} b\right)^{2}+0 \cdot\left(\frac{1}{\sqrt{2}} a-\frac{1}{\sqrt{2}} b\right)^{2}
\end{aligned}
$$

and $x_{1}, x_{2}, \cdots, x_{n}$ ave orthogonal)!

For General $n \times n$ Symmetric Matrix A
eigenvalue $\left(\lambda_{1}, x_{1}\right) \cdots\left(\lambda_{n}, x_{n}\right)$

- $x_{1} \ldots x_{n}$ are all orthogonal
(same calculation)

$$
-A=\lambda_{1} x_{1} x_{1}^{\top}+\lambda_{2} x_{2} x_{2}^{\top}+\cdots+\lambda_{n} x_{n} x_{n}^{\top}
$$

project to vector x_{1} project to vertor x_{2} project to vector x_{n}
lemma $A x_{1}=\lambda_{1} \cdot x_{1} . \quad A x_{2}=\lambda_{1} x_{2} \quad$ A symmetric

$$
\lambda_{1} \neq \lambda_{2}, \quad \text { Aim } \quad x_{1}^{\top} x_{2}=0 \quad\left(x_{1}, x_{2}\right. \text { are orfloge 1) }
$$

Calculate $x_{1}^{\top} A x_{2}$

$$
\begin{array}{rlrl}
-x_{1}^{\top} A x_{2} & =x_{1}^{\top}\left(\lambda_{2} x_{2}\right) \quad & x_{2} \text { is the eigenvector: } \\
& =\lambda_{2}\left(x_{1}^{\top} x_{2}\right) & \\
-x_{1}^{1 \times n} A x_{2}^{n \times n} & =\left(x_{1}^{\top} A x_{2}\right)^{\top} & & x_{1}^{\top} A x_{2} \text { is a red number } \\
& =x_{2}^{\top} A^{\top} x_{1} & & (A B)^{\top}=B^{\top} A^{\top} \\
& =x_{2}^{\top} A x_{1} & & A^{\top}=A \text { (A is symmetric) } \\
(\text { see }) & =x_{2}^{\top}\left(\lambda x_{1}\right) & & x_{1} \text { is the eigenvector } \\
& =\lambda_{1}\left(x_{1}^{\top} x_{2}\right) &
\end{array}
$$

So!

$$
\lambda_{1} \underbrace{\left.\left(x_{1}^{\top} x_{2}\right)=\lambda_{2} \mid x_{1}^{\top} x_{2}\right)}_{\Rightarrow x_{1}^{\top} x_{2}=0!!}=x_{1}^{\top} A x_{2} \quad \lambda_{1} \neq \lambda_{2}
$$

This tolls us $x_{1} \cdots x_{n}$ are orthgal
if $\left\|x_{1}\right\|_{1}=\cdots=\left\|x_{n}\right\|=1$ are all unit lector $\bar{X}=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]$ is orthogonal

$$
\begin{aligned}
& A=\bar{\Sigma} \wedge \Sigma^{-1}=Q \wedge Q_{\nu}^{\top}
\end{aligned}
$$

$$
\begin{aligned}
& A=\sum \lambda_{i} \frac{\left.x_{i} x_{i}\right]^{\top}}{\text { pDecition }} \text {. }
\end{aligned}
$$

Tho

$$
A \text { is symmetric }
$$

lemma. $A x_{1}=\lambda_{1} x_{1}, A x_{2}=\lambda_{2} x_{2}$ and $\lambda_{1} \neq \lambda_{2}$
Then $x_{1}{ }^{\top} x_{2}=0$ inn
proof. Cachilate $\left.x_{1}^{\top} A x_{2} \rightarrow n \times 1\right\} n$ neal number

$$
\begin{aligned}
-x_{1}^{\top} A x_{2} & =x_{1}^{\top}\left(\lambda_{1} x_{1}\right) & & \text { because } x_{2} \text { is eigenvector } \\
& =\lambda_{2}\left(x_{1}^{\top} x_{2}\right) & & \\
-\quad x_{1}^{\top} A x_{2} & =\left(x_{1}^{\top} A x_{2}\right)^{\top} & & \text { This is became } x_{1}^{\top} A x_{2} \text { is } \\
& =x_{2}^{\top} A^{\top} x_{1} & & \text { by the rale of trans port of pumper } \\
& =x_{2}^{\top} A x_{1} & & A \text { is symmetric } \\
& =x_{2}^{\top}\left(\lambda_{1} x_{1}\right) & & \lambda x_{1}=\lambda x_{1} \\
& =\lambda_{1}\left(x_{1}^{\top} x_{2}\right) & & x_{2}^{\top} x_{1}=x_{1}^{\top} x_{2} \text { because if ts dot }
\end{aligned}
$$

We know $\lambda_{1}\left(x_{1}^{\top} x_{2}\right)=x_{1}^{\top} A x_{2}=\lambda_{2}\left(x_{1}^{\top} x_{2}\right)$

$$
\left.\Rightarrow \quad x_{1}^{\top} x_{2}=0 \quad \text { for } \lambda_{1} \notin \lambda_{1}\right)
$$

$$
A=\Sigma \wedge \mathbb{X}^{-1}=Q \wedge Q^{T_{0}} \rightarrow Q \text { is orthognel }
$$

$$
\begin{aligned}
& A=\underset{\text { projection }}{\lambda_{1} x_{1} x_{1}^{\top}}+\underset{\text { projection }}{\lambda_{2} x_{2} x_{2}^{\top}}+\cdots+\underset{\text { projection }}{\lambda_{n} x_{n} x_{2}{ }^{\prime}} \\
& \text { and } x_{1}, x_{2}, \cdots . x_{2} \text { ave orthogonal)!!! Most important }
\end{aligned}
$$

Positive Definite Matrix. (P.S.D Matrix)

- PSD Matrix A means.
- A is symmetric
- all the eigenvalues $\lambda_{i}>0$

Why PSD Matrix?
$x_{1} \cdots x_{n}$ are idol numbers but variables

$$
\left(\vec{x}=\left(\begin{array}{c}
x_{1} \\
\vdots \\
x_{n}
\end{array}\right)\right)
$$

$\vec{x}^{\top} A \vec{x}$ is a gudratic function respect to $x_{1} \cdots x_{n}$

$$
x^{\top} A x=\sum \lambda_{i}\left(x_{i}^{\top} x\right)^{2}
$$

This is the (af. $\left.(a+b)^{2},(a-b)^{2}\right)$ coefcient?
always larger than 0
P.S.D Matrix \Leftrightarrow it is sum of positive square function!!

So $X^{\top} A x$ is always larger than zero !!! The same by eigen deompocition/digoulizetion

- If A and B are P.S.D Matrix. Then $A+B$ is P.S.D.
- If A is P.S.D. Then A^{-1} is P.S.D.
(1) $x^{\top} A x, x^{\top} B x$ is always positive, so $x^{\top}(A+B) x=x^{\top} A x+x^{\top} B x$ ave also positive.
A is symmefric
(2) if $A=A^{\top} \Rightarrow\left(A^{-1}\right)^{\top}=\left(A^{\top}\right)^{-1}=A^{-1} \Rightarrow A^{-1}$ is symonetric

$$
\text { if } A x=\lambda x \quad \Leftrightarrow \quad A^{-1} x=1 / \lambda x
$$

x is A's $\Leftrightarrow \lambda^{-1 / 1,0}$ is A^{-1};
eigenvale eigenvalue.
A is symmetric. $x_{1}, x_{2} \cdots x_{n}$ are orthagal

$$
\begin{aligned}
& A=\lambda_{1} x_{1} x_{1}^{\top}+\lambda_{2} x_{2} x_{2}^{\top}+\cdots+\lambda_{n} x_{n} x_{n}^{\top} \\
& A^{-1}=\lambda_{1}^{-1} x_{1} x_{1}^{\top}+\lambda_{2}^{-1} x_{2} x_{2}^{\top}+\cdots+\lambda_{n}^{-1} x_{n} x_{n}^{\top}
\end{aligned}
$$

Strang Section 6.4 - Symmetric Matrices and Section 6.5 - Positive Definite Matrices

Symmetric Matrices

Diagonalizing a Symmetric Matrix

An $n \times n$ matrix A is symmetric if $A^{T}=A$.

The eigenvalues of a symmetric matrix are real and the eigenvectors are orthogonal (or can be made orthogonal).

Every symmetric matrix is diagonalizable

$$
A=X \Lambda X^{-1} \quad \begin{array}{ll}
\text { eigenvectors are orthogonal } \\
\text { they can be made orthonormal }
\end{array}
$$

$$
\Longrightarrow A=Q \Lambda Q^{T} \quad \text { orthogonal matrix: } Q^{-1}=Q^{T}
$$

Eigenvectors of a Symmetric Matrix
Let \vec{x}_{1}, \vec{x}_{2} be eigenvectors of A associated with λ_{1}, λ_{2}, such that $\lambda_{1} \neq \lambda_{2}$

$$
\Longrightarrow A \vec{x}_{1}=\lambda_{1} \vec{x}_{1}, \quad A \vec{x}_{2}=\lambda_{2} \vec{x}_{2}
$$

(by def of e-value/e-vector)
We want to show that $\vec{x}_{1} \perp \vec{x}_{2} \Longrightarrow \vec{x}_{1}^{T} \vec{x}_{2}=0$
Consider $\lambda_{1} \vec{x}_{1}^{\top} \vec{x}_{2}$

$$
\begin{gathered}
\left.=\begin{array}{c}
\left(x_{1} \lambda_{1}\right.
\end{array}\right)^{\top} \overrightarrow{x_{2}}=\left(A \vec{x}_{1}\right)^{\top} \overrightarrow{x_{2}}= \\
\lambda_{1}^{\top}=\lambda_{1} \\
\text { defofe-ralue }^{\top}
\end{gathered}
$$

$$
=A \vec{x}_{2} \text { (A is symmetric) }
$$

$$
=\lambda_{2} \vec{x}_{2}
$$

Thus $\lambda_{1} \overrightarrow{x_{1}^{\top}} \overrightarrow{x_{2}}=\lambda_{2} \overrightarrow{x_{1}^{\top}} \overrightarrow{x_{2}} \Leftrightarrow \lambda_{1} \vec{x}_{1}^{\top} \overrightarrow{x_{2}}-\lambda_{2} \overrightarrow{x_{1}^{\top}} \overrightarrow{x_{2}}=0$

$$
\begin{array}{ll}
\left(\lambda_{1} \neq \lambda_{2}\right) & \left.\lambda_{1}\right) \vec{x}_{1}^{\top} x_{2}=0 \\
\text { Thus } \vec{x}_{1}^{\top} x_{2}=0
\end{array}
$$

Example
Diagonalize $A=\left[\begin{array}{ccc}6 & -2 & -1 \\ -2 & 6 & -1 \\ -1 & -1 & 5\end{array}\right]$. (into the form $Q \wedge Q^{\top}$ since A is symmetric)

- eigenvalues

$$
\begin{aligned}
& \text { eigenvalues } \left.\begin{array}{cc}
6-\lambda & -2 \\
-1 \\
-2 & 6-\lambda \\
-1 & -1 \\
\hline & 5-\lambda
\end{array} \right\rvert\,=\cdots=(6-\lambda)(\lambda-8)(\lambda-3)=0 \\
& \begin{array}{c}
\left.x_{1}=3\right) \\
N u \mid(A-3 I) \\
\left(\begin{array}{ccc|c}
3 & -2 & -1 & 0 \\
-2 & 3 & -1 & 0 \\
-1 & -1 & 2 & 0
\end{array}\right) \sim\left(\begin{array}{ccc|c}
-1 & -1 & 2 & 0 \\
0 & 1 & -1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right) \begin{array}{l}
x_{3}: f r e e \\
x_{2}=x_{3} \\
-x_{1}-x_{2}+2 x_{3}=0 \\
x_{1}=2 x_{3}-x_{3}=x_{3}
\end{array} \\
\vec{x}_{1}=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right]
\end{array}
\end{aligned}
$$

Example

$$
\begin{aligned}
& \text { (} \lambda_{2}=6 \mathrm{Nal}(A-6 I):\left(\begin{array}{ccc|c}
0 & -2 & -1 & 0 \\
-2 & 0 & -1 & 0 \\
-1 & -1 & -1 & 0
\end{array}\right) \rightarrow \cdots\left(\begin{array}{c}
-1 \\
-1 \\
2
\end{array}\right] \\
& \lambda_{3}=8 \mathrm{Nul}(A-8 I):\left(\begin{array}{ccc|c}
-2 & -2 & -1 & 0 \\
-2 & -2 & -1 & 0 \\
-1 & -1 & -3 & 0
\end{array}\right) \rightarrow\left(\begin{array}{c}
\overrightarrow{x_{3}}=\left[\begin{array}{c}
-1 \\
1 \\
0
\end{array}\right] \\
A=\left(\begin{array}{ccc}
1 / \sqrt{3} & -1 / \sqrt{6} & -1 / \sqrt{2} \\
1 / \sqrt{3} & -1 / \sqrt{6} & 1 / \sqrt{2} \\
1 / \sqrt{3} & 2 / \sqrt{6} & 0
\end{array}\right)\left(\begin{array}{ccc}
3 & 0 & 0 \\
0 & 6 & 0 \\
0 & 0 & 8
\end{array}\right)\left(\begin{array}{ccc}
1 / \sqrt{3} & 1 / \sqrt{3} & 1 / \sqrt{3} \\
-1 / \sqrt{6} & -1 / \sqrt{6} & 2 / \sqrt{6} \\
-1 / \sqrt{2} & 1 / \sqrt{2} & 0
\end{array}\right)
\end{array}\right.
\end{aligned}
$$

Positive Definite Matrices

Definition

An $n \times n$ matrix A is positive definite if:
(i) $A=A^{T}$
(ii) $\lambda_{i}>0$ for all $1 \leq i \leq n$

The following statements are equivalent to "all eigenvalues are positive":
(1) all pivots are positive
(2) all upper left determinants are positive
(3) $\vec{x}^{T} A \vec{x}$ is positive for all $\vec{x} \neq 0$

Example
Show all equivalent positive definite properties for $\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$.
Here,

$$
\vec{x}=\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] ; \overrightarrow{x^{\top}}=\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]
$$

$$
\begin{aligned}
& \overrightarrow{x^{\top}} A \vec{x}= {\left[\begin{array}{lll}
x_{1} & x_{2} & x_{3}
\end{array}\right]\left[\begin{array}{ccc}
2 & -1 & 0 \\
-1 & 2 & -1 \\
0 & -1 & 2
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right]=\left[\begin{array}{lll}
2 x_{1}-x_{2} & -x_{1}+2 x_{2}-x_{3} & -x_{2}+2 x_{3}
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] } \\
&= 2\left(x_{1}^{2}-x_{1} x_{2}+x_{2}^{2}-x_{2} x_{3}+x_{3}^{2}\right)_{x_{3}^{2}+x_{3}^{2}} \quad x_{2}^{2}+x_{1}^{2} \\
& x_{1}^{2}+x_{1}^{2} \\
&= 2 x_{1}^{2}-2 x_{1} x_{2}+2 x_{2}^{2}-2 x_{2} x_{3}+2 x_{3}^{2} \\
&=x_{1}^{2}+\left(x_{1}-x_{2}\right)^{2}+\left(x_{2}-x_{3}\right)^{2}+x_{3}^{2} \quad \text { but } \begin{array}{l}
x_{1} \neq 0 \text { or } \\
\geqslant 0
\end{array} \geqslant 0 \geqslant 0 \quad x_{2} \neq 0 \text { or } x_{3} \neq 0
\end{aligned}
$$

Properties
Theorem: If A is positive definite, then so is A^{-1}.
A is positive definite \Leftrightarrow all of its eigenvalues are positive
Lemma: $\lambda \neq 0$ is an e-value of $A \Leftrightarrow \frac{1}{\lambda}$ is ar e-value of A^{-1} $(A \in \mathbb{M}(\mathbb{R}))$

$$
A \vec{x}=\lambda \vec{x} \quad \text { for fume } \underset{\lambda \neq 0 ; \vec{x} \in \mathbb{R}^{n}}{ }
$$

$$
A^{-1} \vec{v}=\frac{1}{\lambda} \vec{v}\binom{\text { for me }}{\vec{v} \in \mathbb{R}}
$$

$$
\text { pf (of lemma): } \quad \begin{aligned}
A \vec{x}=\lambda \vec{x} & \Leftrightarrow A^{-1} A \vec{x}=A^{-1} \lambda \vec{x} \\
& \Leftrightarrow \vec{x}=\lambda A^{-1} \vec{x}
\end{aligned}
$$

$$
\begin{aligned}
& \Leftrightarrow \quad \vec{x}=\lambda A^{-1} \vec{x} \\
& \Leftrightarrow \quad A^{-1} \vec{x}=\frac{1}{\lambda} \vec{x} \quad \text { (same e-vector!) } \\
& \Leftrightarrow \quad 1
\end{aligned}
$$

of (of tho): A is positive definite, so all of its eigenvalues $\lambda_{i}>0(1 \leq i \leq n)$. So $\frac{1}{\lambda_{i}}>0 \quad\left(\lambda_{i} \neq 0\right.$ Hi, since A is invertible) and the e-values of A^{-1} are $\frac{1}{\lambda_{i}}$ i so A^{-1} is pos. definite

Properties
Theorem: If A, B are positive definite, then $A+B$ is positive definite.
pf/ A and B are positive definite, so

$$
\overrightarrow{x^{\top} A \vec{x}}>0 \quad \text { and } \quad \overrightarrow{x^{\top}} B \vec{x}>0 \quad \forall \vec{x} \in \mathbb{R}^{n} ; \vec{x} \neq 0
$$

(Note: \vec{x} is arbitrary, So we can keep it the same in both quadratic forms)
Adding both sides of the inequalities:

$$
\vec{x}^{\top} A \vec{x}+\vec{x}^{\top} B \vec{x}>0+0
$$

which means $\overrightarrow{x^{\top}}(A+B) \vec{x}>0$
thus $A+B$ is position definite

Properties

Theorem: If A, B are positive definite, then $A+B$ is positive definite.

