Linear Algebra

Lecture 18
 Diagonalization

Dr. Ralph Chikhany

Recap
Eigenvalue and Eigenvector, stater matrix

$$
\vec{A} \vec{x}=\lambda_{\pi} \vec{x}
$$

eigenvector
eigen value
(1) if $A x=\overrightarrow{0}$ or $x \in \operatorname{Nu} \mid(A), x$ is an ejenvector with eigenvalue Whether A have 0 eigenvalue $\Leftrightarrow \operatorname{dtt}(A)=0$
(2) How to Solve eigenvalue. once we know $\lambda_{1} x$ is soke by $x \in N_{n}(C A-\lambda I)$ Neper
x is the eigenvector with eifen vale λ means $(A-\lambda I) x=\overrightarrow{0}$
λ is eigenvalue $A \Leftrightarrow \operatorname{det}(A-\lambda I)=0$
(3) $P(\lambda):=\operatorname{det}(A-\lambda I)$

Fart 1. $P(\lambda)$ is a n-th order polynomial) by co factor Expansion Fact 2 . eigenvalue is the solution of. $P(\lambda)=0$
Quiz. What is the eigenvalue of upper Trainguker Matrix.

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & & a_{1 n} \\
& a_{22} & & \vdots \\
& \ddots & \vdots \\
& & a_{n n}
\end{array}\right] \quad A-\lambda I=\left[\begin{array}{cccc}
a_{11}-\lambda & a_{12} & & \\
& a_{12}-\lambda & & \vdots \\
& & \ddots & \\
& & & \\
& & & \\
a_{n n}-\lambda
\end{array}\right]
$$

$\operatorname{det}(A-\lambda I)=\left(a_{11}-\lambda\right)\left(a_{22}-\lambda\right) \cdots\left(a_{n n}-\lambda\right)$
all eigenvalues of A is $a_{11} \quad a_{22} \quad \cdots a_{n n}$
Fact 3 $n \times n$ matrix will have n eigenvalue $\lambda_{1} \cdots \lambda_{n}$

$$
\begin{aligned}
& p(\lambda)=(-1)^{n}\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right) \\
&\left(\quad\left(\lambda-\lambda_{1}\right) \cdots\left(\lambda-\lambda_{n}\right)=\operatorname{det}\right.(\lambda I-A)) \\
&(\lambda I-A)=-(A-\lambda I)
\end{aligned}
$$

Why eigen are important $A^{2} x=A \cdot \underline{A x}=A \cdot(\lambda x)=\lambda \cdot A x=\lambda \cdot \lambda x=\lambda^{2} x$

$$
A x=\lambda x \quad A_{x}^{2}=\lambda^{2} x, \quad A^{3} x=\lambda^{3} x, \cdots, \quad A^{k} x=\lambda^{k} x
$$

(λ_{i}, x_{i}) $i=1,2, \cdots, n$ are all the eigenvalue and eigenvectors of A Now we have $\vec{x}=c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\cdots+c_{n} \vec{x}_{n}$
What is my $A \vec{x}$

$$
\begin{aligned}
A \vec{x} & =A\left(c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\cdots+c_{n} \vec{x}_{n}\right) \\
& =c_{1} A \vec{x}_{1}+c_{2} A \vec{x}_{2}+\cdots+c_{n} A \vec{x}_{n} \\
& =c_{1} \lambda_{1} \vec{x}_{1}+c_{2} \lambda_{2} \vec{x}_{2}+\cdots+c_{n} \lambda_{n} \vec{x}_{n} \\
A^{k} \vec{x} & =c_{1} \lambda_{1}^{k} \vec{x}_{1}+c_{2} \lambda_{2}^{k} \vec{x}_{2}+\cdots+c_{n} \lambda_{n}^{k} \overrightarrow{x_{n}}
\end{aligned}
$$

Thy. If A^{\prime} 's eigenuble $\lambda_{1}, \lambda_{1}, \cdots, \lambda_{n}$ are distinct.
Then $x_{1} \cdots x_{n}$ are linear independent. (Not Required)
Start with $n=2$.
Basic idea. $y_{1} A \vec{x}_{1}=\lambda_{1} \vec{x}_{1}, \quad A x_{2}=\lambda_{2} \vec{x}_{2}$
$c_{1} \vec{x}_{1}+c_{2} \overrightarrow{x_{2}}=\overrightarrow{0}$ (1) want to show $a_{1}=c_{2}=0$
$\int \begin{aligned} & \lambda_{1} c_{1} \vec{x}_{1}+\lambda_{2} c_{2} \vec{x}_{2}=\overrightarrow{y_{2}} \quad \text { Times a } A \text { to the left of } 1\end{aligned}$
$\left\{\begin{array}{ll}y_{1}+y_{2}=0 \\ \lambda_{1} y_{1}+\lambda_{2} y_{2}=0\end{array} \quad\left(\begin{array}{cc}1 & 1 \\ \lambda_{1} & \lambda_{2}\end{array}\right)\right.$ is invertible if and only if $\lambda_{1} \neq \lambda_{2}$

$c_{1} \vec{x}_{1}+c_{2} \vec{x}_{2}+\cdots+c_{n} \vec{x}_{b}=0 \quad$ want to slow $c_{1}=\cdots=c_{n}=0$
$\begin{array}{ccc}\lambda_{1} c_{1} \vec{x}_{1}+\lambda_{2} c_{2} \vec{x}_{2}+\cdots+\lambda_{n} c_{n} \vec{x}_{n}=0 \\ \lambda_{1}^{2} c_{1} \vec{x}_{1}+\lambda_{2}^{2} c_{2} \vec{x}_{1}+\cdots+\lambda_{n}^{2} c_{n} \vec{x}_{n}=0 & \text { Tines } & A \\ \vdots \\ \vdots & \text { Tines } & A^{2} \\ \lambda_{1}^{n-1} & \overrightarrow{x_{1}}+\lambda_{1}^{n-1} & \end{array}\left(\begin{array}{cccc}1 & 1 & \cdots & 1 \\ \lambda_{1} & \lambda_{2} & \cdots & \lambda_{n} \\ \vdots & & \lambda_{n} \\ \lambda_{1}^{n-1} & \lambda_{2}^{n-1} & \cdots \lambda_{2}^{n-1}\end{array}\right)$ is incertish
$\lambda_{1}^{n-1} c_{1} \vec{x}_{1}+\lambda_{2}^{n-1} c_{2} \vec{x}_{2}+\cdots+\lambda_{n}^{n-1} a_{n} \vec{x}_{b}=0$ Time A^{n-1}
$\lambda_{1} \not \lambda_{L} \neq \cdots \neq \lambda_{n}$

Thm . If A^{\prime} 's eigenuale $\lambda_{1}, \lambda_{2}, \cdots, \lambda_{n}$ are dotinct.
Then $x_{1} \cdots x_{n}$ are linear independen $t \Rightarrow \underbrace{x=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right]}_{\text {is invertible! }}$

$$
\begin{align*}
& A X=A\left[\begin{array}{lll}
x_{1} & \cdots & x_{n}
\end{array}\right]=\left[\begin{array}{lll}
A x_{1} & \cdots & A x_{n}
\end{array}\right]=\left[\begin{array}{llll}
\lambda_{1} & x_{1} & \lambda_{2} & x_{2} \\
\cdots & \lambda_{n} & x_{n}
\end{array}\right] \\
& \text { check }(\Delta) \\
& \begin{array}{l}
\text { check }(\Delta) \\
{\left[\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right]\left[\begin{array}{ll}
\lambda_{1} & \\
& \lambda_{2}
\end{array}\right]=\left[\begin{array}{ll}
\lambda_{1} a_{11} & \lambda_{2} a_{12} \\
\lambda_{1} a_{21} & \lambda_{22} a_{22}
\end{array}\right]=\underbrace{\left[\begin{array}{lll}
x_{1} \cdots & x_{2}
\end{array}\right] \underbrace{\left[\begin{array}{lll}
\lambda_{1} & & \\
\lambda_{2} & \\
\lambda_{2}
\end{array}\right]}_{\text {diat Matrix }}}_{\underline{\Sigma}}}
\end{array}
\end{align*}
$$

$$
A=\bar{X} \wedge \bar{X}^{-1} \quad \text { diagonditation!! (} \bar{J} \text { is invertible) }
$$

Remark - Not eveny matrix hav a diojonolitation!!

- If A hace dotinct eifencolues, Then A can be diaforlizel.
- If A can't be diafndize means $\operatorname{dim}\left(N_{u l}(A-\lambda I)\right) \geqslant 2$
- If A can't be diagrolize, means A hare foro same eigenualue.

$$
A=X \wedge X^{-1} \text {. What is } A^{k}
$$

$$
\begin{aligned}
& A^{2}=A \cdot A=x \wedge \underbrace{-1} \times \wedge x^{-1} \\
& =x \Delta \wedge x^{-1}=x \wedge^{2} x^{-1} \\
& A^{k}=x \lambda^{k} x^{-1}
\end{aligned}
$$

Similar Matrix
$A=\underline{\bar{X}} B \underline{\underline{X}}^{-1}, A$ and B ale similar Matrix
If A can de diagonalized means. A is similar to $\Lambda=\left[\begin{array}{lll}\lambda_{1} & & \\ & & \\ & & \\ & & A_{n}\end{array}\right]$
(1) $\operatorname{det}(A)=\operatorname{det}(B)$
(2) A and B have the v eigenvalue
(1)

$$
\begin{aligned}
& \operatorname{det}(A)=\operatorname{det}\left(\underline{X} B \underline{X}^{-1}\right) \quad\left(\quad \operatorname{det}(\bar{X})^{\prime} \operatorname{det}\left(\bar{\Sigma}^{-1}\right)=\operatorname{det}(I)=1\right. \\
& x x^{-1}=I \\
&=\operatorname{det}(\overline{\bar{x}}) \operatorname{de}+(B) \operatorname{det}\left(\underline{\bar{X}}^{-1}\right)=\operatorname{det}(B)
\end{aligned}
$$

(2) if A has an eigen-vector x

$$
\underset{x \text { in "A" }}{\substack{A x}} \quad \underset{X^{-1} x \text { in " } B^{\prime \prime}}{\sim B \cdot x} B \bar{X}^{-1} x=\lambda \cdot x \Rightarrow \mathbb{X}^{-1} x=\lambda
$$

Pop 1. $\lambda_{1} \cdots \lambda_{n}=\operatorname{det}(A)$

$$
A=X \wedge \Sigma^{-1} \quad \operatorname{det}(A)=\operatorname{def}(\Lambda)=\lambda_{1}-\ldots \lambda n \quad\left(N \text { of } \operatorname{Rog}_{1} \cdot 0\right)
$$

Prop $2 \lambda_{1}+\cdots+\lambda_{n}=a_{11}+\cdots+a_{n n}$ call sum of the diagonl term "trace" of the metric lemma. $\operatorname{tr}(A B)=\operatorname{tr}(B A)$ is right even when A and B are example. $A=\binom{a}{b}_{2 \times 1} B=(x, y)$ triangluan

$$
\left.\left.\begin{array}{l}
\operatorname{tr}(A B)=\operatorname{tr}\left(\binom{a}{b}(x, y)\right. \\
\operatorname{tr}(B A)=\operatorname{tr}\left(\left(\begin{array}{cc}
1 \times 2 & 2 x
\end{array}\right)=\operatorname{tr}\left(\left(\begin{array}{cc}
a x & a y^{2 \times 2} \\
b x & b y
\end{array}\right)\right)=a x+b y\right. \\
b
\end{array}\right)\right)=\operatorname{tr}((x a+y b \mid))=a x+b y .
$$

Example, $\quad A=\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \quad B=\left(\begin{array}{ll}b_{11} & b_{12} \\ b_{21} & b_{22}\end{array}\right)$

$$
\begin{aligned}
\operatorname{tr}\left(\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)\right) & =\operatorname{Tr}\left(\left(\begin{array}{cc}
a_{11} b_{11}+a_{12} b_{21} & \\
a_{21} b_{12}+a_{22} b_{22}
\end{array}\right)\right) \\
& =a_{11} b_{11}+a_{12} b_{21}+a_{21} b_{12}+a_{22} b_{22}
\end{aligned}
$$

$$
\operatorname{tr}\left(\left(\begin{array}{ll}
b_{11} & b_{12} \\
b_{21} & b_{22}
\end{array}\right)\left(\begin{array}{ll}
a_{11} & a_{12} \\
a_{21} & a_{22}
\end{array}\right)\right)=\operatorname{Tr}\left(\left(\begin{array}{ll}
b_{11} a_{11}+b_{12} a_{21} & \\
& b_{21} a_{12}+b_{22} a_{22}
\end{array}\right)\right)
$$

$$
=b_{11} a_{11}+b_{12}^{i j} \frac{a_{21}}{i c}+\frac{b_{21}}{i j} \frac{a_{12}}{j i}+b_{22} a_{22}
$$

$\sum_{\text {posibile cir) }} b_{i j} a_{j i}$
Once We know $\operatorname{Tr}(A B)=\operatorname{Tr}(B A)$
why $\operatorname{tr}(A)=\lambda_{1}+\cdots+\lambda_{n} \quad$ Remark.

$$
\begin{array}{rlrl}
\operatorname{tr}(A) & =\operatorname{tr}\left(\bar{X} \wedge \bar{X}^{-1}\right) & & \operatorname{Tr}(A B C) \neq \operatorname{Tr}(C B A) \\
& =\operatorname{tr}(\Lambda \underbrace{\bar{X}^{-1}}_{I} \bar{X}) & \operatorname{Tr}(A C B) \\
& =\operatorname{tr}(\Lambda)=\lambda_{1}+\cdots+\lambda_{n} & \operatorname{Tr}(A B C)=\operatorname{Tr}(C A B) \\
& & \operatorname{Tr}(A B C)=\operatorname{Tr}(B C A)
\end{array}
$$

Strang Section 6.2 - Diagonalizing a Matrix

Diagonalization

Diagonalizing a Matrix? What and Why?

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & \ddots & \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] \xrightarrow{\text { Lambda }} \begin{aligned}
& \text { diagonalize } \\
& \swarrow
\end{aligned}=\left[\begin{array}{ccc}
\lambda_{1} \rightarrow \text { lambda } \\
& \lambda_{2} & \\
\\
& & \ddots \\
\\
& & \lambda_{n}
\end{array}\right] \xrightarrow{\text { of } A}
$$

Diagonalization is useful if we want to compute powers of A.

$$
\begin{aligned}
& A^{k} \rightarrow \text { hard } \\
& \text { we may be interested in } \\
& \text { finding what a matrix } \\
& \text { does to a vector if it acts } \\
& \Lambda^{k} \rightarrow \text { easy } \\
& \text { on it over and over again } \\
& A=\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) ; \quad A^{3^{32}}=\underbrace{\left.\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right) \cdots\left(\begin{array}{ll}
1 & 2 \\
3 & 4
\end{array}\right)}_{32 \text { times! }} \\
& D=\left(\begin{array}{ll}
2 & 0 \\
0 & 3
\end{array}\right) ; D^{2}=\left(\begin{array}{ll}
4 & 0 \\
0 & 9
\end{array}\right) ; D^{3}=\left(\begin{array}{cc}
8 & 0 \\
0 & 27
\end{array}\right) \ldots D^{n}=\left(\begin{array}{ll}
2^{n} & 0 \\
0 & 3^{n}
\end{array}\right) \\
& \text { since } D \text { is diamond }
\end{aligned}
$$

Diagonalization Theorem
Let $A \in \mathbb{M}_{n \times n}(\mathbb{R})$. Then A is diagonalizable if and only if
A as n linearly independent eigenvectors.

Corollary: If a matrix has n distinct eigenvalues, then it is diagonalizable.
11 If a matrix is diaganalizable, it dos not necessarily have n distinct eigenvalues. Diagonalizability is related to hear independence of e-vectors.

1 Diagondimability and investibility are not interchangeable

How to Diagonalize a Matrix
start:

$$
\begin{aligned}
& A=? \wedge ? \\
& A=X \wedge x^{-1}
\end{aligned}
$$

ye-values
We want: $X^{-1} A X=\Lambda$

Thus, A is diagonalizable only if X^{-1} exists.
x^{-1} exists iff cols of x are linearly independent

It turns out that $X=\left[\begin{array}{llll}\overrightarrow{x_{1}} & \overrightarrow{x_{2}} & \ldots & \overrightarrow{x_{n}}\end{array}\right]$ contains the eigenvectors of A associated with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

Why is $\mathrm{X}^{-1} \mathrm{AX}=\Lambda$?
Let A be a matrix with e-values $\left\{\lambda_{1}, \lambda_{2} \ldots \lambda_{n}\right\}$ (some possibly repeated) and $\vec{x}_{1}, \vec{x}_{2}, \ldots, \vec{x}_{n}$ the e-vectors associated with $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$ (respectively,

$$
\begin{aligned}
& A X=A\left[\begin{array}{llll}
\left.\begin{array}{llll}
\vec{x}_{1} & \vec{x}_{2} & \cdots & \vec{x}_{n}
\end{array}\right]=\left[\begin{array}{llll}
A \vec{x}_{1} & A \vec{x}_{2} & \cdots & A \vec{x}_{n}
\end{array}\right]
\end{array}\right. \\
& =\left[\begin{array}{llll}
\lambda_{1} \hat{x}_{1} & \lambda_{2} \vec{x}_{2} & \cdots & \lambda_{n} \vec{x}_{n}
\end{array}\right] \\
& X \Lambda=\left[\begin{array}{llll}
\overrightarrow{x_{1}} & \vec{x}_{2} & \ldots & \vec{x}_{n}
\end{array}\right]\left[\begin{array}{llll}
\lambda_{1} & & \\
& \lambda_{2} & \ddots & \\
& & \lambda_{n}
\end{array}\right]=\left[\begin{array}{llll}
\vec{x}_{1} & \lambda_{1} & \overrightarrow{x_{2}} \lambda_{2} & \ldots \\
\vec{x}_{n} & \lambda_{n}
\end{array}\right] \\
& =\left[\begin{array}{lllll}
\lambda_{1} \vec{x}_{1} & \lambda_{2} & \vec{x}_{2} & \ldots & \lambda_{n} \vec{x}_{n}
\end{array}\right]
\end{aligned}
$$

So $A X=X \Lambda \Rightarrow X^{-1} A X=X^{-1} X \Lambda \Rightarrow X^{-1} A X=\Lambda$
or $\quad \Leftrightarrow \quad A=X \wedge X^{-1}$

Why is $\mathrm{X}^{-1} \mathrm{AX}=\Lambda$?
Thus

$$
A=X \wedge X^{-1} \rightarrow \text { inverse of } X
$$

X: eigenvectors M:éjentalues
in column on the diragnads, formeverywhere else
(this is a factorization of A, aka the diogondization of A)

A X and Λ store e-vectox and e-vakues in respective oder

Order of Eigenvalues and Eigenvectors

Note: The order of the eigenvectors in X must be the same a the order of the eigenvalues in Λ.

If $X=\left[\begin{array}{llll}\vec{x}_{1} & \vec{x}_{2} & \ldots & \vec{x}_{n}\end{array}\right]$, then $\Lambda=\left[\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right]$
If $X=\left[\begin{array}{llll}\vec{x}_{2} & \vec{x}_{1} & \ldots & \vec{x}_{n}\end{array}\right]$, then $\Lambda=\left[\begin{array}{llll}\lambda_{2} & & & \\ & \lambda_{1} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right]$

Powers of A
If A is diagondizable, then $A=X \wedge X^{-1}$. We get:

$$
\begin{aligned}
& A^{2}=\left(X \cap X^{-1}\right)\left(X \cap X^{-1}\right)=(X \cap)\left(X^{-1} X\right)\left(\cap X^{-1}\right) \text { (matrix multiplication } \\
& \text { is associative) } \\
& =(X \Lambda) I\left(\Lambda X^{-1}\right) \\
& =x N A x^{-1}=X n^{2} x^{-1} \\
& A^{4}=x \wedge \underbrace{X^{-1}}_{I} x \wedge \underbrace{X^{-1} x}_{I} \wedge \underbrace{X^{-1} x}_{I} \wedge X^{-1}=X \Lambda^{4} X^{-1} \\
& A^{n}=X \Lambda^{n} X^{-1} \\
& \left(\begin{array}{lllll}
\lambda_{1}^{n} & & & \\
& \lambda_{2} & & \\
& & \ddots & \lambda_{n}^{n}
\end{array}\right)
\end{aligned}
$$

3 multiplications, since Λ^{n} con n multiplications be easily found

Example
Let $A=\left[\begin{array}{cc}7 & -2 \\ 4 & 1\end{array}\right]$. Is $\underbrace{A \text { diagonalizable? If yes, diagonalize it. }}$
yes, Diagonalizable!
In general:
$n \times n$ matrix $\rightarrow n$ distinct
e-values?
Here, A is a 2×2 matrix. we first find the e-values

$$
\begin{aligned}
|A-\lambda I|=\left|\begin{array}{cc}
7-\lambda & -2 \\
4 & 1-\lambda
\end{array}\right| & =(7-\lambda)(1-\lambda)+8 \\
& =7-8 \lambda+\lambda^{2}+8=\lambda^{2}-8 \lambda+15 \\
p(\lambda) & =(\lambda-3)(\lambda-5)
\end{aligned}
$$

We have 2 distinct e-values: $h=3$ and $\lambda=5$
$\Rightarrow A$ is diagondizable

Example
Let $A=\left[\begin{array}{cc}7 & -2 \\ 4 & 1\end{array}\right]$. Is A diagonalizable? If yes, diagonalize it.
Next, fond the e-vectors
$\lambda=3 \operatorname{Nul}(A-3 I) ; \operatorname{Nul}\left(\begin{array}{cc}4 & -2 \\ 4 & -2\end{array}\right) ;\left(\begin{array}{ll|l}4 & -2 & 0 \\ 4 & -2 & 0\end{array}\right) \sim\left(\begin{array}{cc|c}2 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$
x_{2} is free, $x_{1}=\frac{1}{2} x_{2}$ so $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{c}y_{2} \\ 1\end{array}\right]=c\left[\begin{array}{l}1 \\ 2\end{array}\right] \quad(c \in \mathbb{R})$
$\lambda=5 \mathrm{Mul}(A-5 I) ; \operatorname{Nul}\left(\begin{array}{cc}2 & -2 \\ 4 & -4\end{array}\right) ;\left(\begin{array}{cc|c}2 & -2 & 0 \\ 4 & -4 & 0\end{array}\right) \sim\left(\begin{array}{cc|c}1 & -1 & 0 \\ 0 & 0 & 0\end{array}\right)$ x_{2} is free, $x_{1}=x_{2}$ so $\left[\begin{array}{l}x_{1} \\ x_{2}\end{array}\right]=x_{2}\left[\begin{array}{l}1 \\ 1\end{array}\right]$

Example
Let $A=\left[\begin{array}{cc}7 & -2 \\ 4 & 1\end{array}\right]$. Is A diagonalizable? If yes, diagonalize it.
Thus: $X=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right] \Rightarrow X^{-1}=\frac{1}{1-2}\left[\begin{array}{cc}1 & -1 \\ -2 & 1\end{array}\right]$ (using shostut from lecture 16 . for 2×2 matrices)

$$
X^{-1}=\left[\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right] \quad\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]^{-1}=\frac{\text { for } 2 \times 2}{} \frac{1}{a d-b c}\left[\begin{array}{cc}
d & -b \\
-c & a
\end{array}\right]
$$

Thus: $\quad A=X A X^{-1}=\left[\begin{array}{ll}1 & 1 \\ 2 & 1\end{array}\right]\left[\begin{array}{ll}3 & 0 \\ 0 & 5\end{array}\right]\left[\begin{array}{cc}-1 & 1 \\ 2 & -1\end{array}\right]$
(or: $\quad A=X \wedge X^{-1}=\underbrace{\left[\begin{array}{ll}1 & 1 \\ 1 & 2\end{array}\right]}_{\text {new } X} \underbrace{\left[\begin{array}{ll}5 & 0 \\ 0 & 3\end{array}\right]}_{\text {new }} \underbrace{\left[\begin{array}{cc}2 & -1 \\ -1 & 1\end{array}\right]}_{\text {new } X^{-1}})$

Example
Let $A=\left[\begin{array}{cc}7 & -2 \\ 4 & 1\end{array}\right]$. Is A diagonalizable? If yes, diagonalize it.
We can now generalize $A^{n}=X \Lambda^{n} X^{-1}$

$$
\begin{aligned}
& A^{n}=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
3 & 0 \\
0 & 5
\end{array}\right]^{n}\left[\begin{array}{cc}
-1 & 1 \\
2 & -1
\end{array}\right] \\
& A^{n}=\underbrace{\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{cc}
3^{n} & 0 \\
0 & 5^{n}
\end{array}\right]}_{\left[\begin{array}{ll}
3^{n} & 5^{n} \\
2\left(33^{n}\right) & 5^{n}
\end{array}\right]} \begin{array}{ll}
-1 & 1 \\
2 & -1
\end{array}]
\end{aligned}
$$

Thus $A^{n}=\left[\begin{array}{ll}-3 n+2\left(5^{n}\right) & 3^{n}-5^{n} \\ -2\left(3^{n}\right)+2\left(5^{n}\right) & 2\left(3^{n}\right)-5^{n}\end{array}\right] \quad$ ex: A^{10} can be easi \quad found now.

Another Example

$$
A=\left(\begin{array}{ll}
1 & 1 \\
0 & 1
\end{array}\right) \therefore \quad|A-\lambda I|=\left|\begin{array}{cc}
1-\lambda & 1 \\
0 & 1-\lambda
\end{array}\right|=(1-\lambda)^{2}-0=0 \quad \begin{array}{r}
\text { set } \\
(1-\lambda)^{2}=0 \Rightarrow \lambda=1
\end{array}
$$

We have 1 eifensalue for a 2×2 matrix, we are nol gresunteed digannalizability (yet), we check the e-space.

$$
\lambda=1, \operatorname{Nul}(A-I I):\left(\begin{array}{ll|l}
0 & 1 & 0 \\
0 & 0 & 0
\end{array}\right) \begin{aligned}
& x_{1} \text { free } \\
& x_{2}=0
\end{aligned}
$$

 diajonalizable

EFY: If pospible, diajonalize

$$
A=\left[\begin{array}{ccc}
7 & 0 & -3 \\
-9 & -2 & 3 \\
18 & 0 & -8
\end{array}\right]
$$

Similar Matrices

When are two Matrices Similar?
$A=X \Lambda X^{-1} \quad \longrightarrow \quad A$ and Λ are called similar matrices

In general, A and B are similar if

$$
A=\underline{M} B M^{-1}
$$

for some invertible matrix M.
Note:. In general, A need not be diagonolizable and B need not be digonal

$$
A=M B M^{-1} \Leftrightarrow b=M^{-1} A M
$$

- Similar matrices have: same rank, same trace, same determinant and same characteristic polynomial (e-rahes) but different eigenvectors
However: two matrices having the same rank, same trace, same detemchark and same eigenvalues does not necessaricy imply that they'r similar.

Similar Matrices Have the Same Characteristic Polynomial
let A and B be similar matrices. Then the is some matrix C such that $A=C B C^{-1}$
char. polyn of A is $|A-\lambda I|$, char polyn. of B is $|B-\lambda I|$

$$
\begin{aligned}
A-\lambda I & =C B C^{-1}-\lambda I \quad \| I=\lambda C C^{-1} I=C(\lambda I) C^{-1} \\
& =C B C^{-1}-C(\lambda I) C^{-1} \\
& =C\left(B C^{-1}-(\lambda I) C^{-1}\right)=C(B-\lambda I) C^{-1} . \text { Thus } \\
|A-\lambda I| & =\left|C(B-\lambda I) C^{-1}\right| /|M N|=|M| / N \mid \\
& =|C||B-\lambda I|\left|C^{-1}\right|| |\left|C^{-1}\right|=1 /|C| \\
& =|B-\lambda I|
\end{aligned}
$$

