

Linear Algebra

Lecture 18 Diagonalization

Dr. Ralph Chikhany

Strang Section 6.2 – Diagonalizing a Matrix

Course notes adapted from N. Hammoud's NYU lecture notes.

Diagonalization

Diagonalizing a Matrix? What and Why?

Diagonalization is useful if we want to compute powers of A.

	we may be interested in
$A^k \to \text{hard}$	finding what a matrix
	does to a vector if it acts
$\Lambda^k \to \text{easy}$	on it over and over again

Diagonalization Theorem

Let $A \in \mathbb{M}_{n imes n}(\mathbb{R})$. Then A is diagonalizable if and only if

A as n linearly independent eigenvectors.

Corollary: If a matrix has n distinct eigenvalues, then it is diagonalizable.

How to Diagonalize a Matrix

We want: $X^{-1}AX = \Lambda$

Thus, A is diagonalizable only if X^{-1} exists.

It turns out that $X = [\vec{x_1} \ \vec{x_2} \ \dots \ \vec{x_n}]$ contains the eigenvectors of A associated with eigenvalues $\lambda_1, \lambda_2, \dots, \lambda_n$.

Why is $X^{-1}AX = \Lambda$?

Why is $X^{-1}AX = \Lambda$?

Order of Eigenvalues and Eigenvectors

Note: The order of the eigenvectors in X must be the same a the order of the eigenvalues in Λ .

If
$$X = [\vec{x}_1 \ \vec{x}_2 \ \dots \ \vec{x}_n]$$
, then $\Lambda = \begin{bmatrix} \lambda_1 & & & \\ & \lambda_2 & & \\ & & \ddots & \\ & & & \lambda_n \end{bmatrix}$
If $X = [\vec{x}_2 \ \vec{x}_1 \ \dots \ \vec{x}_n]$, then $\Lambda = \begin{bmatrix} \lambda_2 & & & \\ & \lambda_1 & & \\ & & \ddots & \\ & & & & \lambda_n \end{bmatrix}$

Powers of A

Example

Let $A = \begin{bmatrix} 7 & -2 \\ 4 & 1 \end{bmatrix}$. Is A diagonalizable? If yes, diagonalize it.

Example

Let $A = \begin{bmatrix} 7 & -2 \\ 4 & 1 \end{bmatrix}$. Is A diagonalizable? If yes, diagonalize it.

Example

Let $A = \begin{bmatrix} 7 & -2 \\ 4 & 1 \end{bmatrix}$. Is A diagonalizable? If yes, diagonalize it.

Another Example

Similar Matrices

When are two Matrices Similar?

 $A = X\Lambda X^{-1} \longrightarrow A$ and Λ are called similar matrices

In general, A and B are similar if

 $A = MBM^{-1}$

for some invertible matrix M.

Similar Matrices Have the Same Characteristic Polynomial