Linear Algebra

Lecture 18
 Diagonalization

Dr. Ralph Chikhany

Strang Section 6.2 - Diagonalizing a Matrix

Diagonalization

Diagonalizing a Matrix? What and Why?

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \ldots & a_{1 n} \\
a_{21} & a_{22} & \ldots & a_{2 n} \\
\vdots & & \ddots & \\
a_{n 1} & a_{n 2} & \ldots & a_{n n}
\end{array}\right] \xrightarrow{\text { diagonalize }} \Lambda=\left[\begin{array}{llll}
\lambda_{1} & & & \\
& \lambda_{2} & & \\
& & \ddots & \\
& & & \lambda_{n}
\end{array}\right]
$$

Diagonalization is useful if we want to compute powers of A.
we may be interested in
$A^{k} \rightarrow$ hard
$\Lambda^{k} \rightarrow$ easy
finding what a matrix
does to a vector if it acts
on it over and over again

Diagonalization Theorem

Let $A \in \mathbb{M}_{n \times n}(\mathbb{R})$. Then A is diagonalizable if and only if
A as n linearly independent eigenvectors.

Corollary: If a matrix has n distinct eigenvalues, then it is diagonalizable.

How to Diagonalize a Matrix

We want: $X^{-1} A X=\Lambda$

Thus, A is diagonalizable only if X^{-1} exists.

It turns out that $X=\left[\begin{array}{llll}\overrightarrow{x_{1}} & \overrightarrow{x_{2}} & \ldots & \overrightarrow{x_{n}}\end{array}\right]$ contains the eigenvectors of A associated with eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$.

Why is $\mathrm{X}^{-1} \mathrm{AX}=\Lambda$?

Why is $\mathrm{X}^{-1} \mathrm{AX}=\Lambda$?

Order of Eigenvalues and Eigenvectors

Note: The order of the eigenvectors in X must be the same a the order of the eigenvalues in Λ.

If $X=\left[\begin{array}{llll}\vec{x}_{1} & \vec{x}_{2} & \ldots & \vec{x}_{n}\end{array}\right]$, then $\Lambda=\left[\begin{array}{llll}\lambda_{1} & & & \\ & \lambda_{2} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right]$
If $X=\left[\begin{array}{llll}\vec{x}_{2} & \vec{x}_{1} & \ldots & \vec{x}_{n}\end{array}\right]$, then $\Lambda=\left[\begin{array}{llll}\lambda_{2} & & & \\ & \lambda_{1} & & \\ & & \ddots & \\ & & & \lambda_{n}\end{array}\right]$

Powers of A

Example

Let $A=\left[\begin{array}{cc}7 & -2 \\ 4 & 1\end{array}\right]$. Is A diagonalizable? If yes, diagonalize it.

Example

Let $A=\left[\begin{array}{cc}7 & -2 \\ 4 & 1\end{array}\right]$. Is A diagonalizable? If yes, diagonalize it.

Example

Let $A=\left[\begin{array}{cc}7 & -2 \\ 4 & 1\end{array}\right]$. Is A diagonalizable? If yes, diagonalize it.

Another Example

Similar Matrices

When are two Matrices Similar?

$A=X \Lambda X^{-1} \quad \longrightarrow \quad A$ and Λ are called similar matrices

In general, A and B are similar if

$$
A=M B M^{-1}
$$

for some invertible matrix M.

Similar Matrices Have the Same Characteristic Polynomial

