Linear Algebra

Lecture 16
 Cofactors

Dr. Ralph Chikhany

Strang Sections 5.2 - Permutations and Cofactors a and Section 5.3 - Cramer's Rule, Inverses and Volumes

Cofactors

The Minor of an Element
Let A be an $n \times n$ matrix

$$
A=\left[\begin{array}{cccccc}
a_{11} & a_{12} & \ldots & a_{1 j} & \ldots & a_{1 n} \\
\vdots & & & & & \\
a_{i 1} & a_{i 2} & \ldots & a_{i j} & \ldots & a_{i n} \\
\vdots & & & & & \\
a_{n 1} & a_{n 2} & \ldots & a_{n j} & \ldots & a_{n n}
\end{array}\right] \rightarrow \frac{\left(n-1 \int_{x}(n-1)\right.}{\frac{\text { spuare }}{}}
$$

For any element $a_{i j}$, the minor $M_{i j}$ is the determinant of the $(n-1) \times(n-1)$ submatrix that does not include the row and column containing $a_{i j}$.

Let $A=\left[\begin{array}{ccc}1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 7 & 13\end{array}\right]$. Compute the minor of a_{23}.

$$
\operatorname{det}\left[\left(\begin{array}{ll}
1 & 2 \\
3 & 7
\end{array}\right)\right]=1 \times 7-2 \times 3=1
$$

The Cofactor of an Element

Let A be an $n \times n$ matrix

$$
A=\left[\begin{array}{cccccc}
a_{11} & a_{12} & \ldots & a_{1 j} & \ldots & a_{1 n} \\
\vdots & & & & & \\
a_{i 1} & a_{i 2} & \ldots & a_{i j} & \ldots & a_{i n} \\
\vdots & & & & & \\
a_{n 1} & a_{n 2} & \ldots & a_{n j} & \ldots & a_{n n}
\end{array}\right]
$$

The cofactor of any element $a_{i j}$ is $C_{i j}=(-1)^{i+j} M_{i j}$.

$$
\begin{aligned}
C_{23} & =(-1)^{2+3} M_{23} \\
& =(-1) \times 1=1
\end{aligned}
$$

Cofactor Expansion

$\left.=a_{11} \cdot \operatorname{det}\left[\begin{array}{ccc}a_{22} & \cdots & a_{2 n} \\ \vdots & & \vdots \\ a_{n 2} & \cdots & a_{n n}\end{array}\right]\right)$
Not require

$$
L u=\left[\begin{array}{ll}
a_{21} & a_{2 n} \\
a_{\text {ind }} & a_{\text {ann }}
\end{array}\right]
$$

$$
A=\left[\begin{array}{ll}
1 & \\
& L
\end{array}\right] \cdot\left[\begin{array}{ll}
1 & \\
& u
\end{array}\right]
$$

$$
\begin{aligned}
& \operatorname{Hint} 2 \\
& \operatorname{det}\left(\left[\begin{array}{cccc}
a_{11} & \text { eliminate } \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{n 1} & a_{n 2} & \cdots & a_{n n}
\end{array}\right]\right)
\end{aligned}
$$

$=a_{11} \cdot \operatorname{det}\left(\left[\begin{array}{ccc}a_{22} & \cdots & a_{2 n} \\ \vdots & & \vdots \\ a_{n 22} & \cdots & a_{n n}\end{array}\right]\right)$

Let A be an $n \times n$ matrix

The cofactor of any element $a_{i j}$ is $C_{i j}=(-1)^{i+j} M_{i j}$. folef

To obtain the cofactor expansion of any row or column of A, we multiply each element in the row or column by its cofactor, and sum them up.

Combine the fiof row)

- Cofactor expansion along row 1 :
$a_{11} C_{11}+a_{12} C_{12}+\cdots+a_{1 n} C_{1 n}$
- Cofactor expansion along column 2:
$a_{12} C_{12}+a_{22} C_{22}+\cdots+a_{n 2} C_{n 2}$
all' the element on the Glum 12)
For any $n \times n$ matrix, the cofactor expansion along any row or column equals $\operatorname{det} A$.

Cofactor Method to Compute Determinants

Let $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]$, then

$$
\begin{aligned}
\operatorname{det} A=\left|\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right| & =a_{11}(-1)^{1+1}\left|\begin{array}{ll}
a_{22} & a_{23} \\
a_{32} & a_{33}
\end{array}\right|+a_{12}(-1)^{1+2}\left|\begin{array}{ll}
a_{21} & a_{23} \\
a_{31} & a_{33}
\end{array}\right|+a_{13}(-1)^{1+3}\left|\begin{array}{ll}
a_{21} & a_{22} \\
a_{31} & a_{32}
\end{array}\right| \\
& =a_{11}\left(a_{22} a_{33}-a_{32} a_{23}\right)-a_{12}\left(a_{21} a_{33}-a_{31} a_{23}\right)+a_{13}\left(a_{21} a_{32}-a_{31} a_{22}\right) \\
& \text { smallest number of non -zeros }
\end{aligned}
$$

Use cofactor expansion to compute $\left|\begin{array}{ccc}1 & 0 & 3 \\ -4 & 2 & 1 \\ -2 & 0 & 2\end{array}\right| \cdot=1 \cdot(-1)^{1+1} \cdot\left|\begin{array}{cc}2 & 1 \\ 0 & 2\end{array}\right|+0 \cdot[-1)^{1+2}\left|\begin{array}{c}-4 \\ -2 \\ -2\end{array}\right|+3 \cdot(-1)^{1+3}\left|\begin{array}{c}-4 \\ -2 \\ -2\end{array}\right|$
Cofator $\int_{\text {expansion }}=4+0+3 \cdot 4=16$

$$
2 \times(-1)^{2 \times 2} \times\left|\begin{array}{cc}
1 & 3 \\
-2 & 2
\end{array}\right|=2 \times(1 \times 2-(-2) \times 3)=16
$$

Example
(1) $003 c c c \mid$ Note: There are enough zens here in sone rows/Cols, but we could get even more.
$\begin{array}{lllll}a & 0 & a & 0 & 3 \\ b & 0 & & 0\end{array}$, $R_{i} \leftrightarrow R_{j}$ de scales by (-1)
$\left|\begin{array}{lllll}b & a & 0 & a & 0 \\ 0 & b & 0 & 0 & a\end{array}\right|$ Recall: (nw operations) $\Longleftrightarrow \alpha R_{i} \rightarrow R_{i}$ det scales by α
$\alpha R_{i}+R_{j} \rightarrow R_{j}$ determinant doe nor charge
Goat: use pint (1) and make all entries below it a zero.

Example
$\left|\begin{array}{ccccc}1 & 0 & 3 & 0 & 0 \\ 0 & 1 & 0 & 3 & 0 \\ a & 0 & a & 0 & 3 \\ b & a & 0 & a & 0 \\ 0 & b & 0 & 0 & a\end{array}\right|$

Cofactor Method to Compute the Inverse

Let A be an $n \times n$ matrix and let C be the matrix of cofactors of the elements of A. If $\operatorname{det} A \neq 0$, then

$$
A^{-1}=\frac{1}{\operatorname{det} A} C^{T}
$$

Compute the inverse of $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ using the cofactor method.
First, find each $c_{i j}$ (for the cofactor matrix)

Cofactor Method to Compute the Inverse

Let A be an $n \times n$ matrix and let C be the matrix of cofactors of the elements of A. If $\operatorname{det} A \neq 0$, then

$$
A^{-1}=\frac{1}{\operatorname{det} A} C^{T}
$$

Compute the inverse of $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ using the cofactor method.
First, find each $c_{i j}$ (for the cofactor matrix)

$$
\begin{array}{lr}
c_{11}=(-1)^{1+1} a_{22}=+a_{22} \\
c_{12}=(-1)^{1+2} a_{21}=-a_{21} & C=\left(\begin{array}{ll}
a_{22} & -a_{21} \\
-a_{12} & a_{11}
\end{array}\right) \Rightarrow C^{T}=\left(\begin{array}{ll}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right) \\
c_{21}=(-1)^{2+1} a_{12}=-a_{12} & \\
c_{22}=(-1)^{2+2} a_{11}=+a_{11} & A^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left(\begin{array}{ll}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right) \\
(\text { an use This shortcut })
\end{array}
$$

Shortcut to Compute the Inverse of a 2×2 matrix
Compute the inverse of $A=\left[\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right]$ using the cofactor method.

$$
A^{-1}=\frac{1}{a_{11} a_{22}-a_{12} a_{21}}\left(\begin{array}{ll}
a_{22} & -a_{12} \\
-a_{21} & a_{11}
\end{array}\right)
$$

The. $\quad A^{-1}=\frac{1}{\operatorname{det}(A)} C^{\top}$.
C is the matrix of the cofactors!

Cramer's Rule

Cramer's Rule
This is a method that allows you to solve $A \vec{x}=\vec{b}$ using determinants.
Suppose $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right], \vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], \vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.

Cramer's Rule

This is a method that allows you to solve $A \vec{x}=\vec{b}$ using determinants.
Suppose $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right], \vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], \vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.
$\operatorname{def(A)} \cdot \quad x_{1}=\operatorname{det}\left(\left[\begin{array}{lll}b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{33}\end{array}\right] \Rightarrow x_{1}=\frac{\operatorname{det}\left(\left[\begin{array}{lll}b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{33} & a_{32} & a_{33}\end{array}\right]\right)}{\operatorname{det}(A)}\right.$

- To find $x_{1} \uparrow$
$\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right]\left[\begin{array}{lll}x_{1} & \underline{0} & 0 \\ x_{2} & \left.\begin{array}{ll}1 & 0 \\ x_{3} & \underline{0} \\ 0\end{array}\right]\end{array}\right]=\left[\begin{array}{lll}b_{1} & a_{12} & a_{13} \\ b_{2} & a_{22} & a_{23} \\ b_{3} & a_{32} & a_{33}\end{array}\right]$

$$
\left.\begin{array}{rl}
A \cdot\left[\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right)\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right]= & {\left[\begin{array}{ll}
A\left(\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right) & A\left(\begin{array}{l}
0 \\
1 \\
0
\end{array}\right)
\end{array}\right.} \\
& \left.A\left(\begin{array}{l}
0 \\
0 \\
1
\end{array}\right)\right] \\
& \left(\begin{array}{l}
11 \\
b_{1} \\
b_{2} \\
b_{3}
\end{array}\right)=b
\end{array}\left(\begin{array}{l}
a_{12} \\
a_{22} \\
a_{32}
\end{array}\right) \quad\left(\begin{array}{l}
a_{13} \\
a_{23} \\
a_{33}
\end{array}\right)\right] .
$$

Cramer's Rule

This is a method that allows you to solve $A \vec{x}=\vec{b}$ using determinants.
Suppose $A=$
$\left.\begin{array}{ccc}\operatorname{def}_{1} A & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right], \vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], \vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.
$(-1)^{2+2} \cdot x_{2} \cdot 1$

- To find x_{2}

$$
\begin{gathered}
{\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{lll}
1 & x_{1} \\
0 & 0 \\
x_{2} & 0 \\
x_{3} & 1
\end{array}\right]\left[\begin{array}{lll}
a_{11} & b_{1} & a_{13} \\
a_{21} & b_{2} & a_{23} \\
a_{31} & b_{3} & a_{33}
\end{array}\right]} \\
x_{2}=\frac{\operatorname{det}\left[\left[\begin{array}{lll}
a_{12} & b_{1} & a_{01} \\
a_{21} & b_{2} & a_{41} \\
a_{21} & b_{3} & a_{32}
\end{array}\right]\right)}{\operatorname{det}(A)}
\end{gathered}
$$

Cramer's Rule

This is a method that allows you to solve $A \vec{x}=\vec{b}$ using determinants.
Suppose $A=\left[\begin{array}{lll}a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33}\end{array}\right], \vec{x}=\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3}\end{array}\right], \vec{b}=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$.

- To find x_{3}

$$
\left[\begin{array}{lll}
a_{11} & a_{12} & a_{13} \\
a_{21} & a_{22} & a_{23} \\
a_{31} & a_{32} & a_{33}
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & x_{1} \\
0 & 1 & x_{2} \\
0 & 0 & x_{3}
\end{array}\right]\left[\begin{array}{lll}
a_{11} & a_{12} & b_{1} \\
a_{21} & a_{22} & b_{2} \\
a_{31} & a_{32} & b_{3}
\end{array}\right]
$$

Example

$$
\begin{aligned}
& (S):\left\{\begin{array}{l}
2 x+2 y+z=1 \\
2 x+y-z=2 \\
3 x+y+z=3
\end{array} \quad \operatorname{det}(A)=\operatorname{det}\left(\left(\begin{array}{ccc}
2 & 2 & 1 \\
2 & 1 & -1 \\
3 & 1 & 1
\end{array}\right)\right)=7\right. \\
& x=\frac{\operatorname{det}\left(\begin{array}{ccc}
1 & 2 & 1 \\
2 & 1 & -1 \\
3 & 1 & 1
\end{array}\right)}{\operatorname{det}(A)}=\frac{-9}{-7} \\
& y=\frac{\operatorname{det}\left(\begin{array}{ccc}
2 & 1 & 1 \\
2 & 2 & -1 \\
3 & 3 & 1
\end{array}\right)}{\operatorname{det}(A)}=\frac{5}{-7} \\
& z=\frac{\operatorname{det}\left(\begin{array}{lll}
2 & 1 & 1 \\
2 & 1 & 2 \\
3 & 1 & 3
\end{array}\right)}{\operatorname{det}(A)}=\frac{1}{-7} \\
& \text { Crater's Rule is easy for you } \\
& \text { is hard for Gimputer } \\
& \text { For } n \times n \text { matrix } \\
& \text { - frame's Rule } \\
& \text { Computer } n \text { ! times } \\
& \text { - LU decomposition } \\
& \text { ammeter } n^{3} \text { tines }
\end{aligned}
$$

$$
A^{-1}=\frac{1}{\operatorname{det} A} C^{T}
$$

Solve $A A^{-1}=I$

$$
A\left[\begin{array}{llll}
v_{1} & v_{2} & \cdots & v_{n}
\end{array}\right]=\left[\begin{array}{cccc}
1 & 0 & & 0 \\
0 & \vdots & \cdots & 0 \\
0 & 0 & & i
\end{array}\right]
$$

Column Representation of A^{-1}
To solve $A^{-1} \Leftrightarrow$ Solve n equations

$$
A V_{1}=\left[\begin{array}{c}
1 \\
0 \\
\vdots \\
0
\end{array}\right] \cdots \quad A V_{n}=\left[\begin{array}{c}
0 \\
0 \\
1 \\
1
\end{array}\right]
$$

If you use Caner's Rule to solve they.

$$
A^{-1}=\frac{1}{\operatorname{det} A} C^{\top} \text { acned } n!\text { computation }
$$ for Computers I

$\left.\begin{array}{l}\text { elimination method } \\ \text { computation } n^{3}\end{array}\right)$

Example

$$
(S):\left\{\begin{array}{l}
2 x+2 y+z=1 \\
2 x+y-z=2 \\
3 x+y+z=3
\end{array}\right.
$$

