

Linear Algebra

Lecture 16 Cofactors

Dr. Ralph Chikhany

Strang Sections 5.2 – Permutations and Cofactors a and Section 5.3 – Cramer's Rule, Inverses and Volumes

Course notes adapted from N. Hammoud's NYU lecture notes.

Cofactors

The Minor of an Element

Let A be an $n \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & & & & \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix} \longrightarrow \begin{bmatrix} n-1 & j \times (n-1) \\ \ddots & & & \\ n-1 & j \times (n-1) \\ \vdots \\ n-1 & j \times (n-1) \\ n-$$

For any element a_{ij} , the minor M_{ij} is the determinant of the $(n-1) \times (n-1)$ submatrix that does not include the row and column containing a_{ij} .

Let
$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 7 & 13 \end{bmatrix}$$
. Compute the minor of a_{23} . $det \left[\begin{pmatrix} 1 & 2 \\ 3 & 7 \end{pmatrix} \right] = 1 \times 7 - 2 \times 3 = 1 \times 7 + 2 \times 7 + 2 \times 3 = 1 \times 7 + 2 \times 7 + 2 \times 3 = 1 \times 7 + 2 \times 7$

The Cofactor of an Element

Let A be an $n \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & & & & \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix}$$

The cofactor of any element
$$a_{ij}$$
 is $C_{ij} = (-1)^{i+j} M_{ij}$.
 $C_{ij} = (-1)^{2+j} M_{ij}$
 $= (-1)_{k} (-1)_{k}$

Cofactor Expansion

by Hint 2 Qui Ci,

• Cofactor expansion along row 1:

 $a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$

• Cofactor expansion along column 2:

 $a_{12}C_{12} + a_{22}C_{22} + \dots + a_{n2}C_{n2}$ all the element on the Glumon 121 For any $n \times n$ matrix, the cofactor expansion along any row or column equals $\det A$.

Cofactor Method to Compute Determinants

Let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$, then

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12}(-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}(-1)^{1+3} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{12}(a_{21}a_{33} - a_{31}a_{23}) + a_{13}(a_{21}a_{32} - a_{31}a_{22})$$
$$\int_{0}^{2} \sinh(\theta + humber + humbe$$

Example

 $= = \frac{4a^{2} + 27b^{2}}{6s} = \frac{4a^{2} + 2$

Cofactor Method to Compute the Inverse

Let A be an $n \times n$ matrix and let C be the matrix of cofactors of the elements of A. If det $A \neq 0$, then

$$A^{-1} = \frac{1}{\det A} C^T$$

Compute the inverse of $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ using the cofactor method. First, find each c_{ij} (for the cofactor matrix) $c_{11} = (-1)^{1+1}a_{22} = +a_{22}$ $c_{12} = (-1)^{1+2}a_{21} = -a_{21}$ a_{12} $c_{21} = (-1)^{2+1}a_{12} = -a_{12}$ $c_{22} = (-1)^{2+2}a_{11} = +a_{11}$ 0

Cofactor Method to Compute the Inverse

Let A be an $n \times n$ matrix and let C be the matrix of cofactors of the elements of A. If det $A \neq 0$, then

$$A^{-1} = \frac{1}{\det A} C^T$$

Compute the inverse of $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ using the cofactor method.

First, find each c_{ij} (for the cofactor matrix)

$$egin{aligned} c_{11} &= (-1)^{1+1}a_{22} &= +a_{22} \ c_{12} &= (-1)^{1+2}a_{21} &= -a_{21} \ c_{21} &= (-1)^{2+1}a_{12} &= -a_{12} \ c_{22} &= (-1)^{2+2}a_{11} &= +a_{11} \end{aligned}$$
 $C &= \begin{pmatrix} a_{22} & -a_{21} \ -a_{12} & a_{11} \end{pmatrix} \Rightarrow C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ A^{-1} &= rac{1}{a_{11}a_{22} - a_{12}a_{21}} \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{21} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{21} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{21} \ -a_{21} & a_{11} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{21} \ -a_{21} & a_{21} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{21} \ -a_{21} & a_{21} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{21} \ -a_{21} & a_{21} \ -a_{21} & a_{21} \end{pmatrix} \ C^T &= \begin{pmatrix} a_{22} & -a_{21} \ -a_{21} & a_{21} \ -a_{21} \ -a_{21} & a_{21} \ -a_{21} & a_{21} \ -a_{21} \ -a_{21} & a_{21} \ -a_{21} \ -a_{21} \ -a_{$

Shortcut to Compute the Inverse of a 2×2 matrix

Compute the inverse of $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ using the cofactor method.

$$egin{aligned} A^{-1} &= rac{1}{a_{11}a_{22}-a_{12}a_{21}} egin{pmatrix} a_{22} & -a_{12} \ -a_{21} & a_{11} \end{pmatrix} \end{aligned}$$

Thm
$$A^{-1} = de + (A) C^{T}$$
.
L
C is the matting of the Galactors.

This is a method that allows you to solve $A\vec{x} = \vec{b}$ using determinants.

Suppose
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

This is a method that allows you to solve $A\vec{x} = \vec{b}$ using determinants.

Suppose
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \\ b_3 \end{bmatrix}.$$

 $det(A) \quad X_1 = det \left(\begin{bmatrix} b_1 & a_{11} & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{bmatrix} \right) \Rightarrow X_1 = \frac{det \left(\begin{bmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 & 0 & 0 \\ x_2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{bmatrix} = \begin{bmatrix} x_1 & 0 & 0 \\ x_2 & 0 & 1 \end{bmatrix} = \begin{bmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{bmatrix} = A \left(\begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{bmatrix} \begin{pmatrix} 0 & 0 \\ 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} A \begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{pmatrix} A \left(\begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right) = \begin{bmatrix} A \begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{bmatrix} A \left(\begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \end{bmatrix} \right) = A \left(\begin{bmatrix} x_1 \\ x_1 \\ x_3 \end{bmatrix} \begin{pmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \right) = b \left(\begin{bmatrix} a_{12} & a_{13} \\ a_{22} & a_{23} \\ a_{33} \end{bmatrix} A \left(\begin{bmatrix} a_{11} \\ a_{12} \\ a_{12} \\ a_{12} \\ a_{12} \end{bmatrix} \right)$

This is a method that allows you to solve $A\vec{x} = \vec{b}$ using determinants.

Suppose
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

Olef A
 $(-1)^{2+2} \times 1 \cdot [$ $det(-)$
• To find x_2
 $\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ x_2 \\ x_3 \end{bmatrix}, \vec{b} = \begin{bmatrix} a_{11} & b_1 & a_{13} \\ b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{bmatrix}$
 $\chi_1 = \frac{det}{det} \begin{bmatrix} a_{11} & b_1 & a_{13} \\ b_2 & a_{23} \\ a_{31} & b_3 & a_{33} \end{bmatrix}$

This is a method that allows you to solve $A\vec{x} = \vec{b}$ using determinants.

Suppose
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

• To find x_3

a_{11}	a_{12}	a_{13}	[1	0	x_1	a_{11}	a_{12}	b_1
a_{21}	a_{22}	a_{23}	0	1	x_2	a_{21}	a_{22}	b_2
a_{31}	a_{32}	a_{33}	0	0	x_3	a_{31}	a_{32}	b_3

Example

$$A^{-1} = \frac{1}{de+A} C^{T}$$
Solve $A A^{-1} = I$

$$A \begin{bmatrix} v_{1} & v_{2} & \cdots & v_{n} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A \begin{bmatrix} v_{1} & v_{2} & \cdots & v_{n} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A \begin{bmatrix} v_{1} & v_{2} & \cdots & v_{n} \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A^{-1} = \frac{1}{de+A} C^{T} \quad (need \ n \neq computatives \ for \ computatives \ for \ computatives \end{bmatrix}$$

$$\left(\begin{array}{c} elimination \ methed \\ 0 & 0 & 0 \end{array}\right)$$

Example

$$(S): \begin{cases} 2x + 2y + z = 1\\ 2x + y - z = 2\\ 3x + y + z = 3 \end{cases}$$