

Linear Algebra

Lecture 16 Cofactors

Dr. Ralph Chikhany

Strang Sections 5.2 – Permutations and Cofactors a and Section 5.3 – Cramer's Rule, Inverses and Volumes

Course notes adapted from N. Hammoud's NYU lecture notes.

Cofactors

The Minor of an Element

Let A be an $n \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & & & & \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix}$$

For any element a_{ij} , the minor M_{ij} is the determinant of the $(n-1) \times (n-1)$ submatrix that does not include the row and column containing a_{ij} .

Let $A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 5 & 8 \\ 3 & 7 & 13 \end{bmatrix}$. Compute the minor of a_{23} .

The Cofactor of an Element

Let A be an $n \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & & & & \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & & & & \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix}$$

The cofactor of any element a_{ij} is $C_{ij} = (-1)^{i+j} M_{ij}$.

Cofactor Expansion

Let A be an $n \times n$ matrix

$$A = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1j} & \dots & a_{1n} \\ \vdots & & & & \\ a_{i1} & a_{i2} & \dots & a_{ij} & \dots & a_{in} \\ \vdots & & & & \\ a_{n1} & a_{n2} & \dots & a_{nj} & \dots & a_{nn} \end{bmatrix}$$

The cofactor of any element a_{ij} is $C_{ij} = (-1)^{i+j} M_{ij}$.

To obtain the cofactor expansion of any row or column of A, we multiply each element in the row or column by its cofactor, and sum them up.

• Cofactor expansion along row 1:

 $a_{11}C_{11} + a_{12}C_{12} + \dots + a_{1n}C_{1n}$

• Cofactor expansion along column 2:

 $a_{12}C_{12} + a_{22}C_{22} + \dots + a_{n2}C_{n2}$

For any $n \times n$ matrix, the cofactor expansion along any row or column equals det A.

Cofactor Method to Compute Determinants

Let $A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$, then

$$\det A = \begin{vmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{vmatrix} = a_{11}(-1)^{1+1} \begin{vmatrix} a_{22} & a_{23} \\ a_{32} & a_{33} \end{vmatrix} + a_{12}(-1)^{1+2} \begin{vmatrix} a_{21} & a_{23} \\ a_{31} & a_{33} \end{vmatrix} + a_{13}(-1)^{1+3} \begin{vmatrix} a_{21} & a_{22} \\ a_{31} & a_{32} \end{vmatrix}$$
$$= a_{11}(a_{22}a_{33} - a_{32}a_{23}) - a_{12}(a_{21}a_{33} - a_{31}a_{23}) + a_{13}(a_{21}a_{32} - a_{31}a_{22})$$

Use cofactor expansion to compute
$$\begin{vmatrix} 1 & 0 & 3 \\ -4 & 2 & 1 \\ -2 & 0 & 2 \end{vmatrix}$$
.

Example

Shortcut to Compute the Inverse of a 2×2 matrix

Compute the inverse of $A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$ using the cofactor method.

$$A^{-1} = rac{1}{a_{11}a_{22}-a_{12}a_{21}}inom{a_{22}}{-a_{21}}inom{a_{11}}{-a_{21}}$$

This is a method that allows you to solve $A\vec{x} = \vec{b}$ using determinants.

Suppose
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

This is a method that allows you to solve $A\vec{x} = \vec{b}$ using determinants.

Suppose
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

• To find x_1

$$\begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix} \begin{bmatrix} x_1 & 0 & 0 \\ x_2 & 1 & 0 \\ x_3 & 0 & 1 \end{bmatrix} \begin{bmatrix} b_1 & a_{12} & a_{13} \\ b_2 & a_{22} & a_{23} \\ b_3 & a_{32} & a_{33} \end{bmatrix}$$

This is a method that allows you to solve $A\vec{x} = \vec{b}$ using determinants.

Suppose
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

• To find x_2

a_{11}	a_{12}	a_{13}	[]	1	x_1	0	a_{11}	b_1	a_{13}
a_{21}	a_{22}	a_{23}	()	x_2	0	a_{21}	b_2	a_{23}
a_{31}	a_{32}	a_{33}	[()	x_3	1	a_{31}	b_3	a_{33}

This is a method that allows you to solve $A\vec{x} = \vec{b}$ using determinants.

Suppose
$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}, \ \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix}, \ \vec{b} = \begin{bmatrix} b_1 \\ b_2 \\ b_3 \end{bmatrix}.$$

• To find x_3

a_{11}	a_{12}	a_{13}	[1	0	x_1	$\lceil a_1 \rceil$	$_{1}$ a_{12}	b_1
a_{21}	a_{22}	a_{23}	0	1	x_2	a_2	$a_{1} a_{22}$	b_2
a_{31}	a_{32}	a_{33}	[0	0	x_3	$\lfloor a_3 \rfloor$	a_{1} a_{32}	b_3

Example

$$(S): \begin{cases} 2x + 2y + z = 1\\ 2x + y - z = 2\\ 3x + y + z = 3 \end{cases}$$

Example

$$(S): \begin{cases} 2x + 2y + z = 1\\ 2x + y - z = 2\\ 3x + y + z = 3 \end{cases}$$