

Lecture 2 Vectors and Spans

Yiping Lu Based on Dr. Ralph Chikhany's Slide

Reminders

- Get access to Gradescope, Campuswire.
- Obtain the textbook.
- Problem Set 1 due by 11.59 pm on Friday (NY time).
 - ✓ Late work policy applies.
- Recap Quiz 1 due by 11.59 pm on Sunday (NY time).
 - * Late work policy does not apply.
- Recap Quiz is timed.
 - Once you start, you have 60 minutes to finish it (even if you close the tab)

Latex -> Overleaf -> Copy

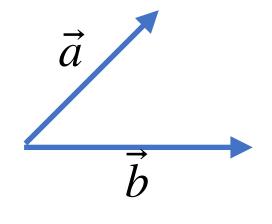
You can put what you want to recap in the (anonymous) form.

ReCap

Course notes adapted from *Introduction to Linear Algebra* by Strang (5th ed), N. Hammoud's NYU lecture notes, and *Interactive Linear Algebra* by Margalit and Rabinoff, in addition to our text

Vector Addition

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} + \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$$



$$\vec{a}$$
 \vec{b}

$$\vec{a} + \vec{b} = ?$$

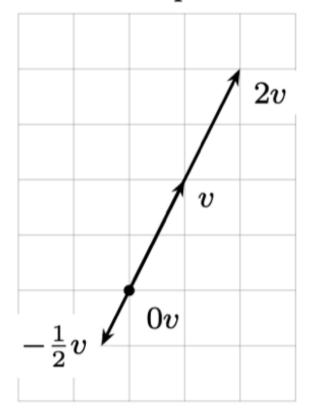
$$\vec{a} - \vec{b} = ?$$

$$\vec{a} - \vec{a} = ?$$

Scalar vector multiplication

$$c \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$$

Some multiples of v.



$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \bullet \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$$

Dot product is a linear combination

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \bullet \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$$

Example 3 Dot products enter in economics and business. We have three goods to buy and sell. Their prices are (p_1, p_2, p_3) for each unit—this is the "price vector" p. The quantities we buy or sell are (q_1, q_2, q_3) —positive when we sell, negative when we buy. Selling q_1 units at the price p_1 brings in $q_1 p_1$. The total income (quantities q times prices p) is the dot product $q \cdot p$ in three dimensions:

Income = $(q_1, q_2, q_3) \cdot (p_1, p_2, p_3) = q_1 p_1 + q_2 p_2 + q_3 p_3 = dot product$.

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \bullet \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$$

Length

Distance

 $\|\vec{v}\|$ And |c|

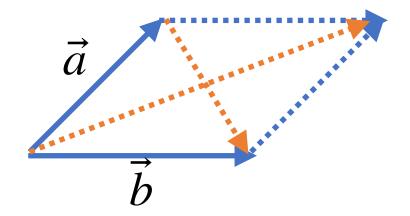
Unit Vector:

What is the unit vector of (1,1)?

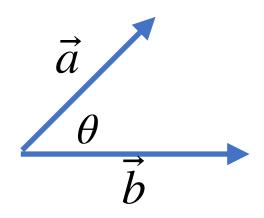
Communicative
$$\vec{a} \cdot \vec{b} =$$

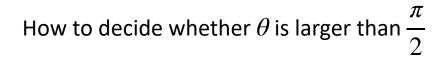
Distributive
$$(\vec{a} + \vec{b}) \cdot \vec{c} =$$

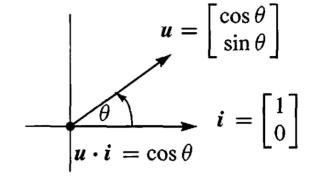
Example
$$\|\vec{a} + \vec{b}\|^2 + \|\vec{a} - \vec{b}\|^2 =$$



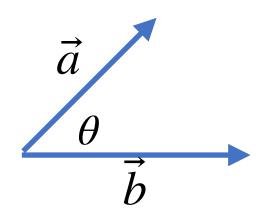
Angle

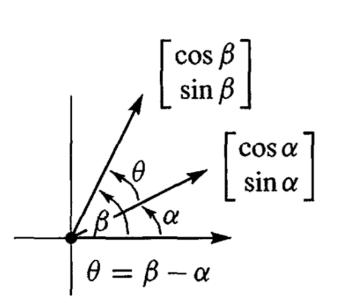




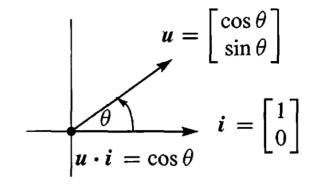


Angle





calculate $\cos(\beta - \alpha)$

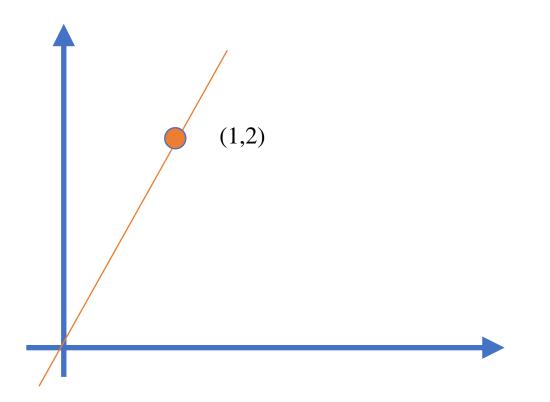


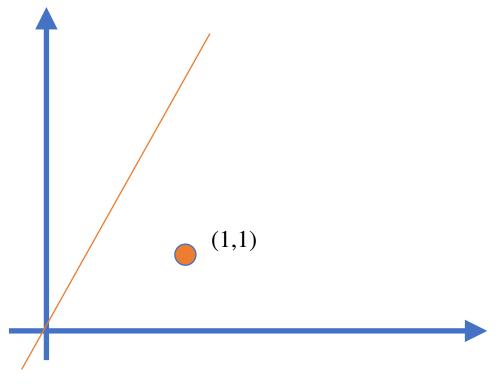
Motivation: Best fit of linear equation

Not Required

overdetermined linear system

$$2x = 2$$
$$x = 1$$





Example

1.2 C Find a vector $\mathbf{x} = (c, d)$ that has dot products $\mathbf{x} \cdot \mathbf{r} = 1$ and $\mathbf{x} \cdot \mathbf{s} = 0$ with the given vectors $\mathbf{r} = (2, -1)$ and $\mathbf{s} = (-1, 2)$.

How is this question related to Example 1.1 C, which solved cv + dw = b = (1,0)?

1.1 C Find two equations for the unknowns c and d so that the linear combination cv + dw equals the vector b:

$$v = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
 $w = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$ $b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$.

Inequalities

SCHWARZ INEQUALITY
$$|v \cdot w| \le ||v|| ||w||$$

$$|\boldsymbol{v} \cdot \boldsymbol{w}| \leq ||\boldsymbol{v}|| \, ||\boldsymbol{w}||$$

TRIANGLE INEQUALITY
$$||v+w|| \le ||v|| + ||w||$$

The dot product of v = (a, b) and w = (b, a) is 2ab. Both lengths are $\sqrt{a^2+b^2}$. The Schwarz inequality in this case says that $2ab \le a^2+b^2$.

Reminder: Linear Combination

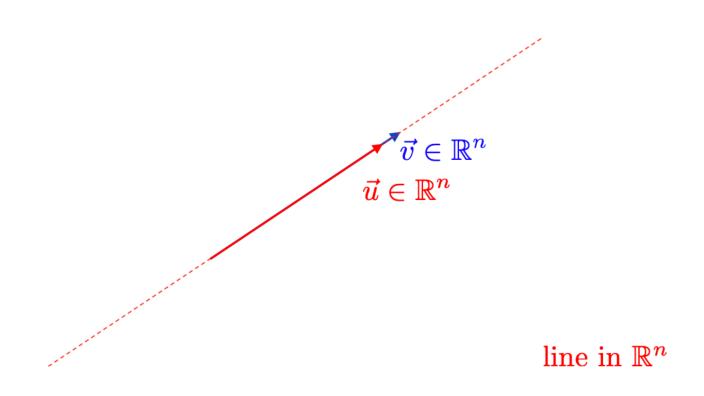
$$w = c_1 v_1 + c_2 v_2 + \dots + c_p v_p$$

where c_1, c_2, \ldots, c_p are scalars, v_1, v_2, \ldots, v_p are vectors in \mathbf{R}^n , and w is a vector in \mathbf{R}^n .

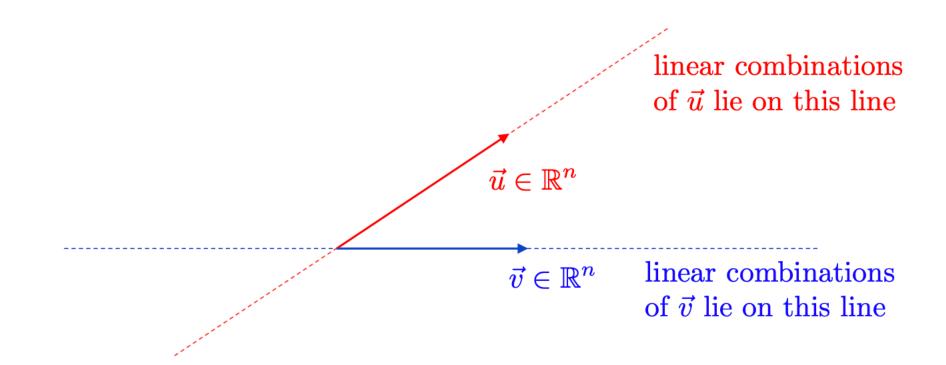
Definition

We call w a linear combination of the vectors v_1, v_2, \ldots, v_p . The scalars c_1, c_2, \ldots, c_p are called the **weights** or **coefficients**.

Geometric Interpretation of Linear Combinations



Geometric Interpretation of Linear Combinations



linear combinations of \vec{u} and \vec{v} lie on a plane in \mathbb{R}^n

Transfer Linear Equation to a Linear Combination Problem

$$2x + y = 1$$
$$x + y = 1$$

Spans

Course notes adapted from *Introduction to Linear Algebra* by Strang (5th ed), N. Hammoud's NYU lecture notes, and *Interactive Linear Algebra* by Margalit and Rabinoff, in addition to our text

Reminder: Linear Combination

$$w = c_1 v_1 + c_2 v_2 + \dots + c_p v_p$$

where c_1, c_2, \ldots, c_p are scalars, v_1, v_2, \ldots, v_p are vectors in \mathbf{R}^n , and w is a vector in \mathbf{R}^n .

Definition

We call w a linear combination of the vectors v_1, v_2, \ldots, v_p . The scalars c_1, c_2, \ldots, c_p are called the **weights** or **coefficients**.

Span

Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$ be a set of vectors in \mathbb{R}^n . We define

 $\operatorname{span}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m\}=\operatorname{set}$ of all linear combinations of $\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m$

For example, what is the span of (2, -4) and (1, 1)?

Span

Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$ be a set of vectors in \mathbb{R}^n . We define

 $\operatorname{span}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m\}=\operatorname{set}$ of all linear combinations of $\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m$

Is
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 in the span of $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$?

Span

Let $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$ be a set of vectors in \mathbb{R}^n . We define

 $\mathrm{span}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m\} = \mathrm{set} \ \mathrm{of} \ \mathrm{all} \ \mathrm{linear} \ \mathrm{combinations} \ \mathrm{of} \ \vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m$

Is
$$\begin{bmatrix} 4 \\ -2 \end{bmatrix}$$
 in the span of $\begin{bmatrix} 2 \\ -4 \end{bmatrix}$ and $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$?

More Precise Definition

Definition

"the set of" "such that"

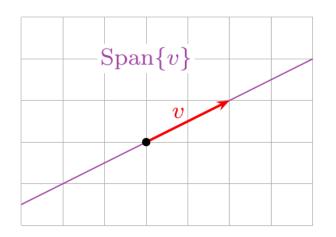
Let v_1, v_2, \ldots, v_p be vectors in \mathbb{R}^n . The **span** of v_1, v_2, \ldots, v_p is the collection of all linear combinations of v_1, v_2, \ldots, v_p , and is denoted $\operatorname{Span}\{v_1, v_2, \ldots, v_p\}$. In symbols:

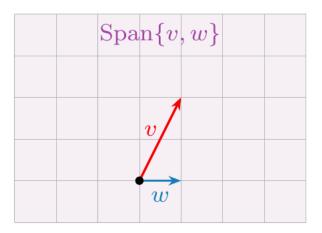
Span
$$\{v_1, v_2, \dots, v_p\} = \{x_1v_1 + x_2v_2 + \dots + x_pv_p \mid x_1, x_2, \dots, x_p \text{ in } \mathbf{R} \}.$$

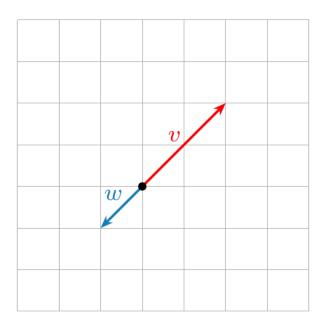
Synonyms: Span $\{v_1, v_2, \ldots, v_p\}$ is the subset **spanned by** or **generated** by v_1, v_2, \ldots, v_p .

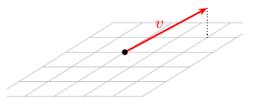
This is the first of several definitions in this class that you simply **must learn**. I will give you other ways to think about Span, and ways to draw pictures, but *this is the definition*. Having a vague idea what Span means will not help you solve any exam problems!

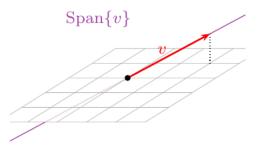
Drawing a picture of Span $\{v_1, v_2, \ldots, v_p\}$ is the same as drawing a picture of all linear combinations of v_1, v_2, \ldots, v_p .

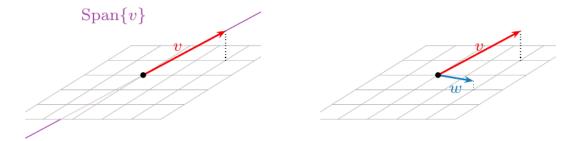


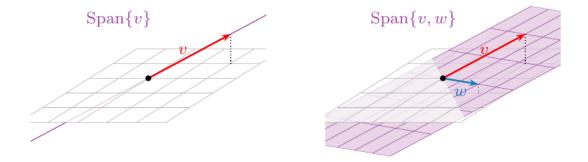


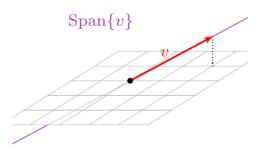


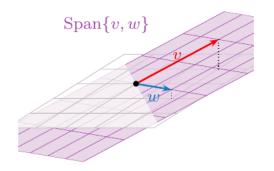


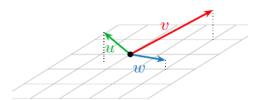


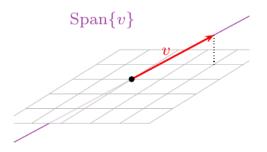


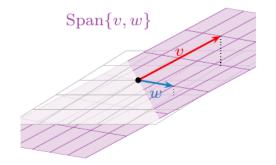


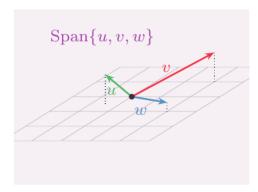


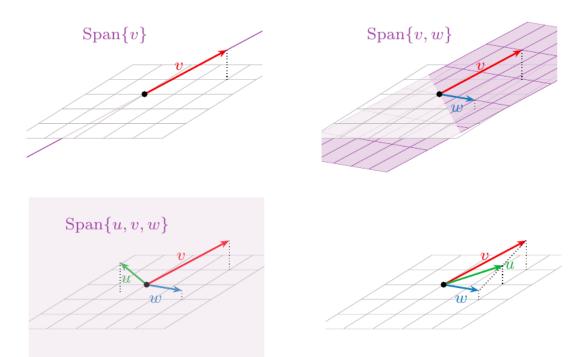


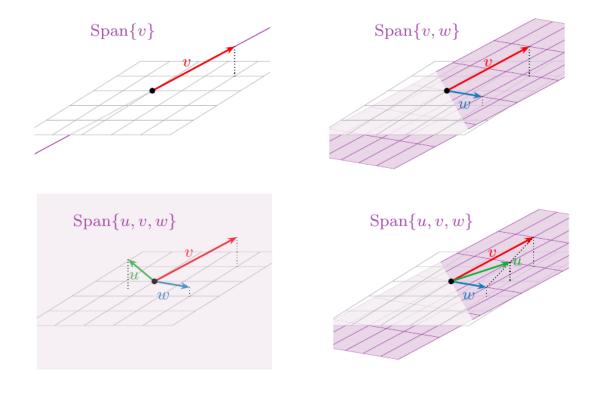












Questions?