

# Lecture 2 Vectors and Spans

Yiping Lu Based on Dr. Ralph Chikhany's Slide

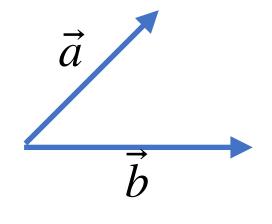
#### Reminders

- Get access to Gradescope, Campuswire.
- Obtain the textbook.
- Problem Set 1 due by 11.59 pm on Friday (NY time).
  - ✓ Late work policy applies.
- Recap Quiz 1 due by 11.59 pm on Sunday (NY time).
  - \* Late work policy does not apply.
- Recap Quiz is timed.
  - Once you start, you have 60 minutes to finish it (even if you close the tab)

Latex -> Overleaf -> Copy



You can put what you want to recap in the (anonymous) form.




#### ReCap

Course notes adapted from *Introduction to Linear Algebra* by Strang (5<sup>th</sup> ed), N. Hammoud's NYU lecture notes, and *Interactive Linear Algebra* by Margalit and Rabinoff, in addition to our text

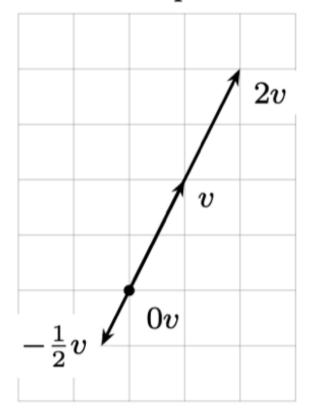
### **Vector Addition**

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} + \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$$



$$\vec{a}$$
 $\vec{b}$ 

$$\vec{a} + \vec{b} = ?$$


$$\vec{a} - \vec{b} = ?$$

$$\vec{a} - \vec{a} = ?$$

# Scalar vector multiplication

$$c \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$$

Some multiples of v.



$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \bullet \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$$

Dot product is a linear combination

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \bullet \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$$

**Example 3** Dot products enter in economics and business. We have three goods to buy and sell. Their prices are  $(p_1, p_2, p_3)$  for each unit—this is the "price vector" p. The quantities we buy or sell are  $(q_1, q_2, q_3)$ —positive when we sell, negative when we buy. Selling  $q_1$  units at the price  $p_1$  brings in  $q_1 p_1$ . The total income (quantities q times prices p) is the dot product  $q \cdot p$  in three dimensions:

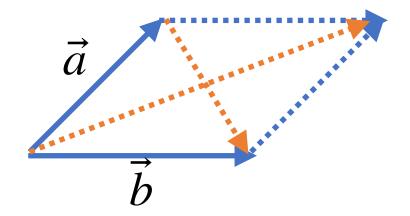
Income =  $(q_1, q_2, q_3) \cdot (p_1, p_2, p_3) = q_1 p_1 + q_2 p_2 + q_3 p_3 = dot product$ .

$$\begin{pmatrix} a \\ b \\ c \end{pmatrix} \bullet \begin{pmatrix} x \\ y \\ z \end{pmatrix} =$$

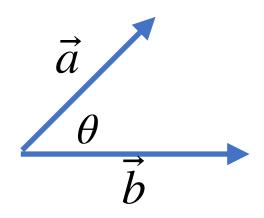
Length

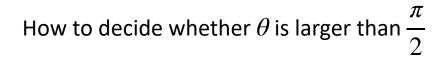
**Distance** 

 $\|\vec{v}\|$  And |c|

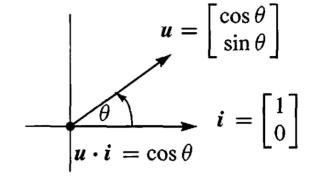

**Unit Vector:** 

What is the unit vector of (1,1)?

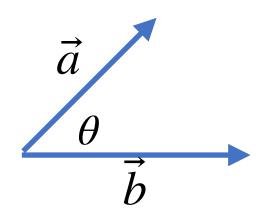

Communicative 
$$\vec{a} \cdot \vec{b} =$$

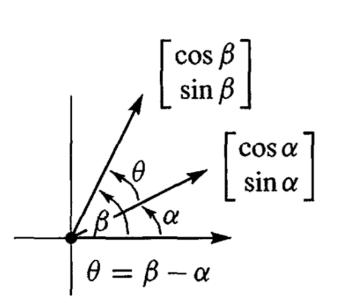

Distributive 
$$(\vec{a} + \vec{b}) \cdot \vec{c} =$$

Example 
$$\|\vec{a} + \vec{b}\|^2 + \|\vec{a} - \vec{b}\|^2 =$$

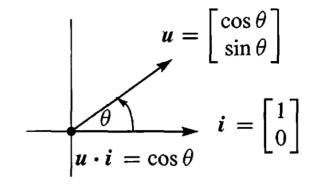



# Angle





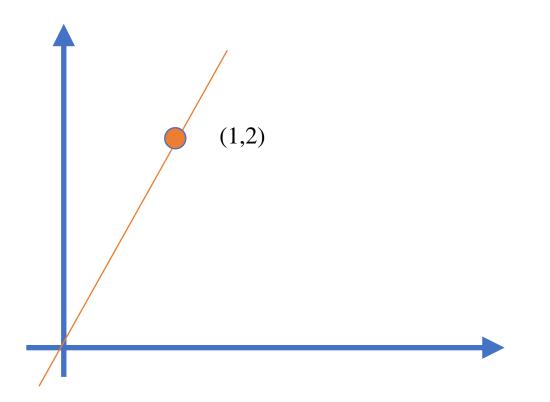

# Angle

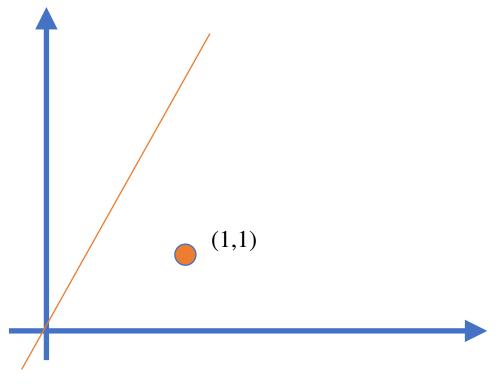




calculate  $\cos(\beta - \alpha)$ 




# Motivation: Best fit of linear equation


Not Required

overdetermined linear system

$$2x = 2$$
$$x = 1$$







# Example

**1.2 C** Find a vector  $\mathbf{x} = (c, d)$  that has dot products  $\mathbf{x} \cdot \mathbf{r} = 1$  and  $\mathbf{x} \cdot \mathbf{s} = 0$  with the given vectors  $\mathbf{r} = (2, -1)$  and  $\mathbf{s} = (-1, 2)$ .

How is this question related to Example 1.1 C, which solved cv + dw = b = (1,0)?

**1.1 C** Find two equations for the unknowns c and d so that the linear combination cv + dw equals the vector b:

$$v = \begin{bmatrix} 2 \\ -1 \end{bmatrix}$$
  $w = \begin{bmatrix} -1 \\ 2 \end{bmatrix}$   $b = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ .

## Inequalities

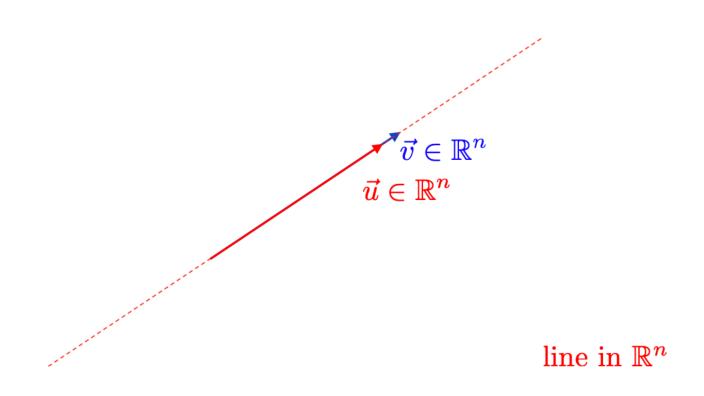
SCHWARZ INEQUALITY 
$$|v \cdot w| \le ||v|| ||w||$$

$$|\boldsymbol{v} \cdot \boldsymbol{w}| \leq ||\boldsymbol{v}|| \, ||\boldsymbol{w}||$$

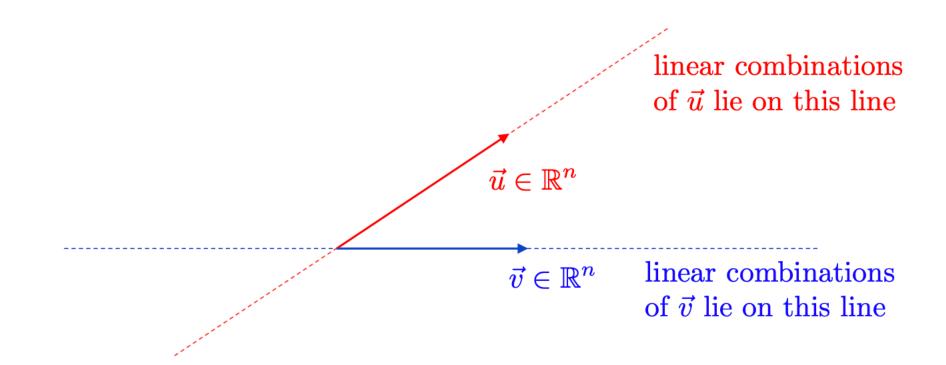
TRIANGLE INEQUALITY 
$$||v+w|| \le ||v|| + ||w||$$

The dot product of v = (a, b) and w = (b, a) is 2ab. Both lengths are  $\sqrt{a^2+b^2}$ . The Schwarz inequality in this case says that  $2ab \le a^2+b^2$ .

#### **Reminder: Linear Combination**


$$w = c_1 v_1 + c_2 v_2 + \dots + c_p v_p$$

where  $c_1, c_2, \ldots, c_p$  are scalars,  $v_1, v_2, \ldots, v_p$  are vectors in  $\mathbf{R}^n$ , and w is a vector in  $\mathbf{R}^n$ .


#### Definition

We call w a linear combination of the vectors  $v_1, v_2, \ldots, v_p$ . The scalars  $c_1, c_2, \ldots, c_p$  are called the **weights** or **coefficients**.

## Geometric Interpretation of Linear Combinations



## Geometric Interpretation of Linear Combinations



linear combinations of  $\vec{u}$  and  $\vec{v}$  lie on a plane in  $\mathbb{R}^n$ 

## Transfer Linear Equation to a Linear Combination Problem

$$2x + y = 1$$
$$x + y = 1$$



#### Spans

Course notes adapted from *Introduction to Linear Algebra* by Strang (5<sup>th</sup> ed), N. Hammoud's NYU lecture notes, and *Interactive Linear Algebra* by Margalit and Rabinoff, in addition to our text

#### **Reminder: Linear Combination**

$$w = c_1 v_1 + c_2 v_2 + \dots + c_p v_p$$

where  $c_1, c_2, \ldots, c_p$  are scalars,  $v_1, v_2, \ldots, v_p$  are vectors in  $\mathbf{R}^n$ , and w is a vector in  $\mathbf{R}^n$ .

#### Definition

We call w a linear combination of the vectors  $v_1, v_2, \ldots, v_p$ . The scalars  $c_1, c_2, \ldots, c_p$  are called the **weights** or **coefficients**.

## Span

Let  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$  be a set of vectors in  $\mathbb{R}^n$ . We define

 $\operatorname{span}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m\}=\operatorname{set}$  of all linear combinations of  $\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m$ 

For example, what is the span of (2, -4) and (1, 1)?

## Span

Let  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$  be a set of vectors in  $\mathbb{R}^n$ . We define

 $\operatorname{span}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m\}=\operatorname{set}$  of all linear combinations of  $\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m$ 

Is 
$$\begin{bmatrix} 1 \\ 2 \end{bmatrix}$$
 in the span of  $\begin{bmatrix} 2 \\ 4 \end{bmatrix}$ ?

## Span

Let  $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_m$  be a set of vectors in  $\mathbb{R}^n$ . We define

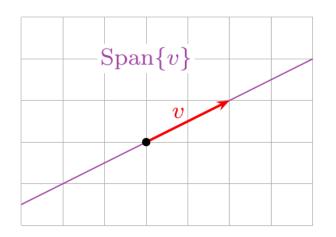
 $\mathrm{span}\{\vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m\} = \mathrm{set} \ \mathrm{of} \ \mathrm{all} \ \mathrm{linear} \ \mathrm{combinations} \ \mathrm{of} \ \vec{v}_1,\vec{v}_2,\ldots,\vec{v}_m$ 

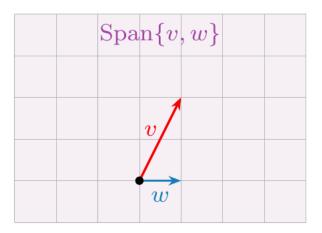
Is 
$$\begin{bmatrix} 4 \\ -2 \end{bmatrix}$$
 in the span of  $\begin{bmatrix} 2 \\ -4 \end{bmatrix}$  and  $\begin{bmatrix} 1 \\ 1 \end{bmatrix}$ ?

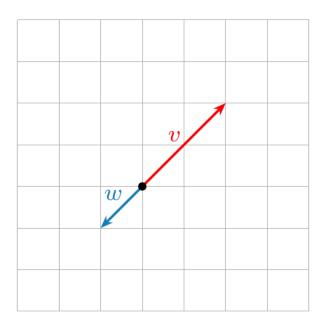
#### More Precise Definition

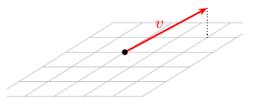
#### Definition

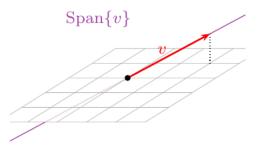
"the set of" "such that"

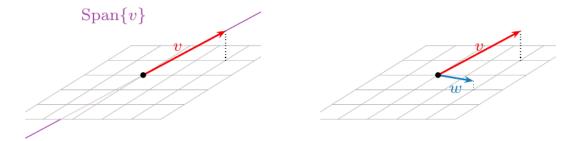

Let  $v_1, v_2, \ldots, v_p$  be vectors in  $\mathbb{R}^n$ . The **span** of  $v_1, v_2, \ldots, v_p$  is the collection of all linear combinations of  $v_1, v_2, \ldots, v_p$ , and is denoted  $\operatorname{Span}\{v_1, v_2, \ldots, v_p\}$ . In symbols:

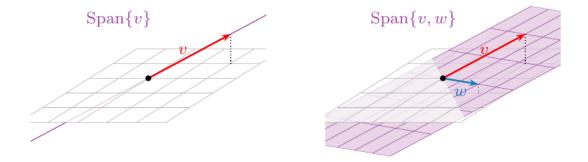

Span
$$\{v_1, v_2, \dots, v_p\} = \{x_1v_1 + x_2v_2 + \dots + x_pv_p \mid x_1, x_2, \dots, x_p \text{ in } \mathbf{R} \}.$$

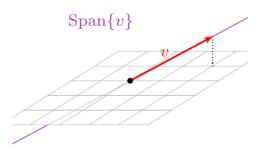

Synonyms: Span $\{v_1, v_2, \ldots, v_p\}$  is the subset **spanned by** or **generated** by  $v_1, v_2, \ldots, v_p$ .

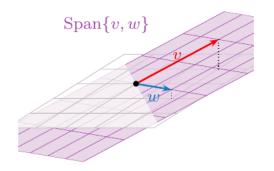

This is the first of several definitions in this class that you simply **must learn**. I will give you other ways to think about Span, and ways to draw pictures, but *this is the definition*. Having a vague idea what Span means will not help you solve any exam problems!

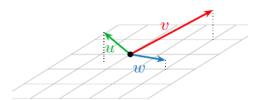

Drawing a picture of Span $\{v_1, v_2, \ldots, v_p\}$  is the same as drawing a picture of all linear combinations of  $v_1, v_2, \ldots, v_p$ .

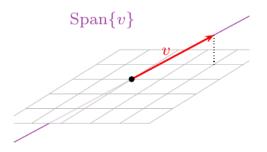


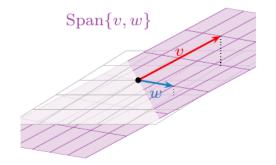



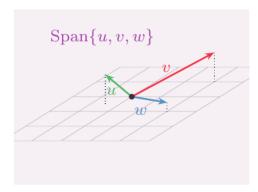



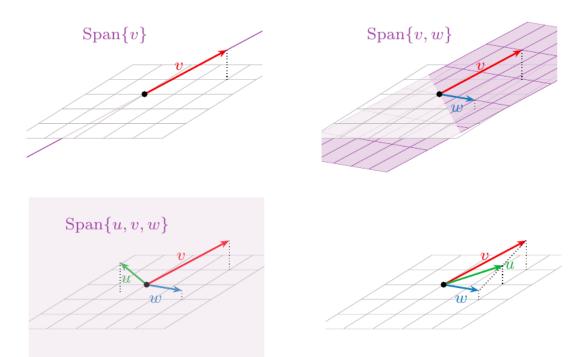



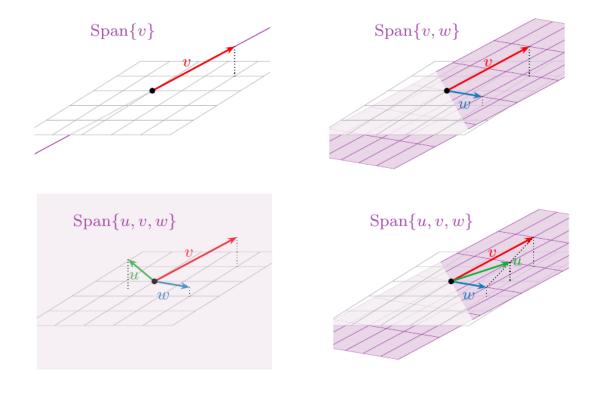
















Questions?