

Lecture 14 Orthogonal Bases

Dr. Ralph Chikhany

Strang Sections 4.4 – Orthonormal Bases and Gram-Schmidt

Orthogonal Matrices

Orthogonal and Orthonormal Vectors

The vectors $\vec{q}_1, \ldots, \vec{q}_n$ are orthogonal if

$$\vec{q}_i \cdot \vec{q}_j = \vec{q}_i^T \vec{q}_j = 0 \qquad (i \neq j)$$

The vectors $\vec{q}_1, \ldots, \vec{q}_n$ are orthonormal if

$$\vec{q}_i^T \vec{q}_j = 0 \qquad (i \neq j)$$

$$||q_i|| = 1$$

Matrices with Orthonormal Columns

A matrix that has orthonormal columns is denoted by Q, where

$$Q^TQ = I$$

$$Q = [\vec{q}_1 \ \vec{q}_2 \dots \vec{q}_n] \qquad \Longrightarrow \qquad Q^T = egin{bmatrix} ec{q}_1^T \ ec{q}_2^T \ dots \ ec{q}_n^T \end{bmatrix}$$

Orthogonal Matrices

If Q is a square matrix with orthonormal columns, then Q is called an orthogonal matrix. In this case $Q^TQ = I$ and $QQ^T = I$.

Q is invertible with $Q^{-1} = Q^T$

Orthogonal and Orthonormal Bases

Orthogonal Bases

A set of vectors $\{\vec{q}_1, \ldots, \vec{q}_n\}$ is called an orthogonal basis of a vector space V if $\vec{q}_1, \ldots, \vec{q}_n$ are orthogonal and they span V.

Theorem: $\{\vec{q}_1, \ldots, \vec{q}_n\}$ is an orthogonal set of nonzero vectors in \mathbb{R}^m , then $\vec{q}_1, \ldots, \vec{q}_n$ are linearly independent and they form a basis for the subspace $S = \text{span}\{\vec{q}_1, \ldots, \vec{q}_n\}$.

Theorem of Coefficients

Let $\{\vec{q}_1,\ldots,\vec{q}_n\}$ be an orthogonal basis for a subspace $S\subset\mathbb{R}^m$. For each $\vec{v}\in S$,

$$\vec{v} = c_1 \vec{q}_1 + c_2 \vec{q}_2 + \dots + c_n \vec{q}_n$$

with
$$c_i = \frac{\vec{q}_i^T \vec{v}}{\vec{q}_i^T \vec{q}_i}$$
 for $1 \le i \le n$.

Gram-Schmidt

The Gram-Schmidt Process

Consider a vector space V with basis $\beta_V = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$

Gram-Schmidt (G-S) turns β_V into an orthogonal basis $\{\vec{q}_1, \vec{q}_2, \dots, \vec{q}_n\}$ by using projections.

The Gram-Schmidt Process

Consider a vector space V with basis $\beta_V = \{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$

Gram-Schmidt (G-S) turns β_V into an orthogonal basis $\{\vec{q}_1, \vec{q}_2, \dots, \vec{q}_n\}$ by using projections.

$$ec{q}_1 = ec{v}_1$$
 $ec{q}_2 = ec{v}_2 - ec{p}_{21} = ec{v}_2 - rac{ec{q}_1^T ec{v}_2}{ec{q}_1^T ec{q}_1} ec{q}_1$
 $ec{q}_3 = ec{v}_3 - ec{p}_{31} - ec{p}_{32}$
 $= ec{v}_3 - rac{ec{q}_1^T ec{v}_3}{ec{q}_1^T ec{q}_1} ec{q}_1 - rac{ec{q}_2^T ec{v}_3}{ec{q}_2^T ec{q}_2} ec{q}_2$
 $dots$
 $dots$
 $ec{q}_n = ec{v}_n - ec{p}_{n1} - ec{p}_{n2} - \cdots - ec{p}_{n(n-1)}$

Another Example

Find an orthogonal basis $\{u_1, u_2, u_3\}$ for $W = \text{Span}\{v_1, v_2, v_3\} = \mathbf{R}^3$, where

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}$$
 $v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$ $v_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix}$.

Example

Find an orthogonal basis $\{u_1, u_2, u_3\}$ for $W = \text{Span}\{v_1, v_2, v_3\} = \mathbf{R}^3$, where

$$v_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ v_2 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}, \ v_3 = \begin{pmatrix} 3 \\ 1 \\ 1 \end{pmatrix} \xrightarrow{\text{G-S}} u_1 = \begin{pmatrix} 1 \\ 1 \\ 0 \end{pmatrix}, \ u_2 = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}, \ u_3 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}$$

Why does this work?

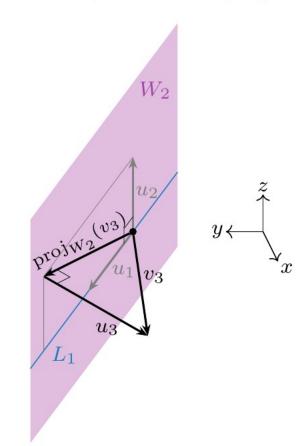
- ▶ Once we have u_1 and u_2 , then we're sad because v_3 is not orthogonal to u_1 and u_2 .
- Fix: let $W_2 = \text{Span}\{u_1, u_2\}$, and let $u_3 = (v_3)_{W_2^{\perp}} = v_3 \text{proj}_{W_3}(u_3)$.
- ▶ By construction, $u_1 \cdot u_3 = 0 = u_2 \cdot u_3$ because $W_2 \perp u_3$.

Check:

$$u_1 \cdot u_2 = 0$$

$$u_1 \cdot u_3 = 0$$

$$u_2 \cdot u_3 = 0$$



QR Factorization

The QR Factorization

Given an $m \times n$ matrix $A = [\vec{v}_1 \ \vec{v}_2 \ \dots \ \vec{v}_n]$, such that $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly independent. Then, we can factorize A as

$$A = QR$$

The QR Factorization

Given an $m \times n$ matrix $A = [\vec{v}_1 \ \vec{v}_2 \ \dots \ \vec{v}_n]$, such that $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly independent. Then, we can factorize A as

$$A = QR$$

Finding Q: Let $Q = [\vec{q}_1 \ \vec{q}_2 \ \dots \ \vec{q}_n]$

To find $\vec{q}_1, \vec{q}_2, \ldots, \vec{q}_n$, we use G-S on the vectors $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n$, then make them orthonormal by dividing each \vec{q}_i by its magnitude.

Finding R: $A = QR \implies$ multiply both sides by Q^T $\implies Q^T A = Q^T QR \implies R = Q^T A$

