

Linear Algebra

Lecture 12 Orthogonality and Projections

Dr. Ralph Chikhany

Strang Sections 4.1 – Orthogonality of the Four Subspaces and Section 4.2 - Projections

Course notes adapted from N. Hammoud's NYU lecture notes.

Projection onto a Line

Orthogonal Projection of a Vector onto a Line

Let $\vec{a} = (a_1, a_2, \ldots, a_m) \in \mathbb{R}^m$ be the direction of a line that goes through the origin, and let $\vec{b} = (b_1, b_2, \ldots, b_m) \in \mathbb{R}^m$. We are interested in finding the projection \vec{p} of \vec{b} onto the line in the direction of \vec{a} .

Orthogonal Projection of a Vector onto a Line

- If $\vec{b} = \vec{a} \implies \hat{x} = 1$, and the projection of \vec{a} onto \vec{a} is itself $\implies P\vec{a} = \vec{a}$.
- If \vec{b} is orthogonal to \vec{a} , then $\vec{a}^T \vec{b} = 0$, and therefore $\vec{p} = 0$.

To find the projection matrix P, we ask:

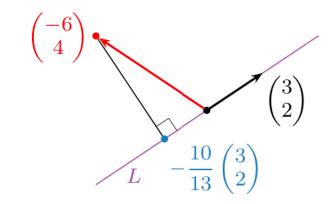
"What matrix should multiply \vec{b} such that the outcome is \vec{p} ?"

We want to find P, such that $P\vec{b} = \vec{p}$.

$$\implies P\vec{b} = \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} \vec{a} = \vec{a} \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} = \frac{\vec{a} \vec{a}^T}{\vec{a}^T \vec{a}} \vec{b} \implies P = \frac{\vec{a} \vec{a}^T}{\vec{a}^T \vec{a}}$$

Example

Compute the orthogonal projection of $x = \begin{pmatrix} -6\\4 \end{pmatrix}$ onto the line L spanned by $u = \begin{pmatrix} 3\\2 \end{pmatrix}$. $y = \operatorname{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u} u = \frac{-18 + 8}{9 + 4} \begin{pmatrix} 3\\2 \end{pmatrix} = -\frac{10}{13} \begin{pmatrix} 3\\2 \end{pmatrix}$.



Example

Find the projection \vec{p} of $\vec{b} = (1, 1, 2)$ onto $\vec{a} = (-2, 3, 1)$.

Find the projection matrix P, such that $\vec{p} = P\vec{b}$.

Projection onto a Subspace

Let $\vec{a}_1, \vec{a}_2, \ldots, \vec{a}_n \in \mathbb{R}^m$ be a set of linearly independent vectors, and let S be a subspace, such that:

 $S = \operatorname{span} \left\{ \vec{a}_1, \vec{a}_2, \dots, \vec{a}_n \right\} \subset \mathbb{R}^m$

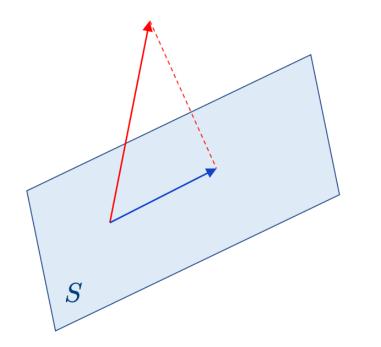
We want to project $\vec{b} \in \mathbb{R}^m$ onto S, i.e., we want to find a projection \vec{p} of \vec{b} onto S, such that the combination

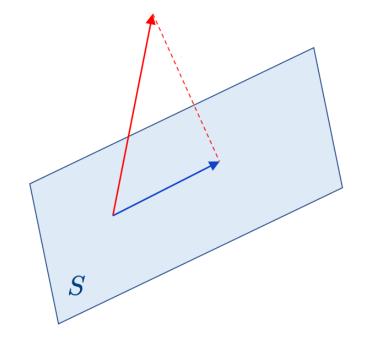
$$\vec{p} = \hat{x}_1 \vec{a}_1 + \hat{x}_2 \vec{a}_2 + \dots + \hat{x}_n \vec{a}_n$$

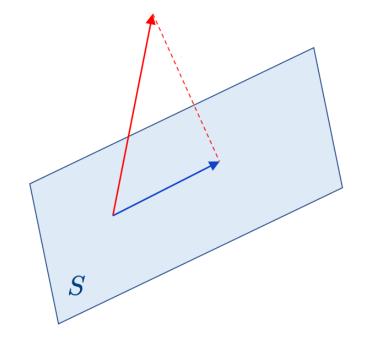
is closest to the vector \vec{b} . Note that \vec{p} can be written as

$$\vec{p} = \begin{bmatrix} \vec{a}_1 & \vec{a}_2 & \dots & \vec{a}_n \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \\ \vdots \\ \hat{x}_n \end{bmatrix} = A\vec{\hat{x}}$$

First, we must find the vector \vec{x} , then we find \vec{p} , and then we find the projection matrix P.







When is $A^{T}A$ invertible?

Theorem: $A^T A$ is invertible if and only if A has linearly independent columns.

Examples

Example: Let
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$. Find \vec{p} , the projection of \vec{b} onto Col A, and find the projection matrix P .