Which of the following is not possible $ightharpoonup \operatorname{rank}(A) = 40$ rank &m. tank &n. because Ax=6. ACIR (1)x32 #32 Variables Arr rank(A) = 32, linear system Ax =-> Mul(A) = (3) -> at most 1 (alufon $b,b \in \mathbb{R}^{47}$ have no solutions $ightharpoonup \operatorname{rank}(A) = 32$, linear system $A^ op x = b, b \in \mathbb{R}^{32}$ have no solution $A^T x = b$ $A^T \in IR^{32 \times 47}$ # 32 Equation # (1) Variables, rank (A) = 32 = # Eq => AT is a full now rank matrix =) GILAT) = (R32 => ATx=b at least have no AT x = b. be 1Rgl. rank (A) = 32 must have infinite solutions! dim(Nul AT)) = 47-32 = 15 >0 > ATX = b must have have infinit solution Suppose that A is a 3 imes 2 matrix whose Nullspace contains exactly one element. $\rightarrow Nul(A) = \{i\}$ $\rightarrow lonk(A) = 2$ Which of the following would be a basis for Row A? -> Row (A) S IR2 dim(Row(A)) = 10mk(A) = 1 }=> Row(A) = 1R2 $\left\{\begin{bmatrix} 1\\0 \end{bmatrix}, \begin{bmatrix} 0\\1 \end{bmatrix}\right\}$ is a biasis of \mathbb{R}^2 . Ocontains 1 vector but there is insufficient information to determine a basis O Contains 2 vectors but there is insufficient information to determine a basis

```
Checking Subspace
    - If Vis a subspace. check v. VieV > GVI+GVieV
    - If V is not a subspace, site me an example shows that
                                   J. T. EV but C. J. + a J. EV
Ex. V= {(x. y) | x2 - y2 = 0) is not a subspace
        Vi=(1,-1), Vi = (1,+1), Hen Vi+ Vi=12,0) & V
       exaldul a ton vi V 02
      a) all symmetric Matrix is a subspace.
Ex.
      b) all polynoimals like ff fix) = ax + bx + c) is a subspace
     f_1 = a_1 x^{2} + b_1 x + c_1, \quad f_2 = a_2 x^{2} + b_2 x + c_2
      \Rightarrow d_1 f_1 + d_2 f_2 = (d_1 a_1 + d_2) x^2 + (d_1 b_1 + d_2 b_1) x + (d_1 a_1 + d_2 c_2)
  What is the basis of b),
     basis is not unique! You just need to live an example
 Ajust a way to provide a bosis.
  - a=1 b=0 c=0 f(x)=x^2 b) is a subspace with dime 3
                                       and basis is {x. x. 1}
  - a = b = c = a f(x) = x
 -a=0 b=0 c >1 f(x) = 1
 a) check symmetric metrix is subspace
                                                           an. an. are free. are is freed
                         ( and and
what is the basis?
                                        > Q12 = Q21
                                                         1x2 Sym Mothix
```

is a vector space

{(00) (00) (00)}

dim = 3

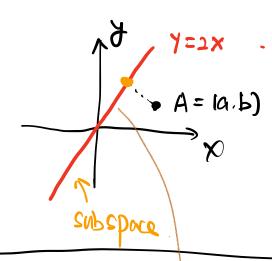
 $- a_{11} = 0 \quad a_{12} = 1 \quad a_{22} = 0 \quad \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$

 $-\alpha_{11} = 0 \qquad \alpha_{22} = 1 \qquad \begin{pmatrix} 0 & 0 \\ 0 & 4 \end{pmatrix}$

Lecture 12 Orthogonality and Projections

Dr. Ralph Chikhany

Motivation of projection



Question:

1=1x A = 10.6) What is the macrost point on like? to (a.b)

Cases that like system don't have solution.

we project to suess the best bolution is all the point of [x, 2x) on red live

(1,1) =A

Ax = b That don't have a solution

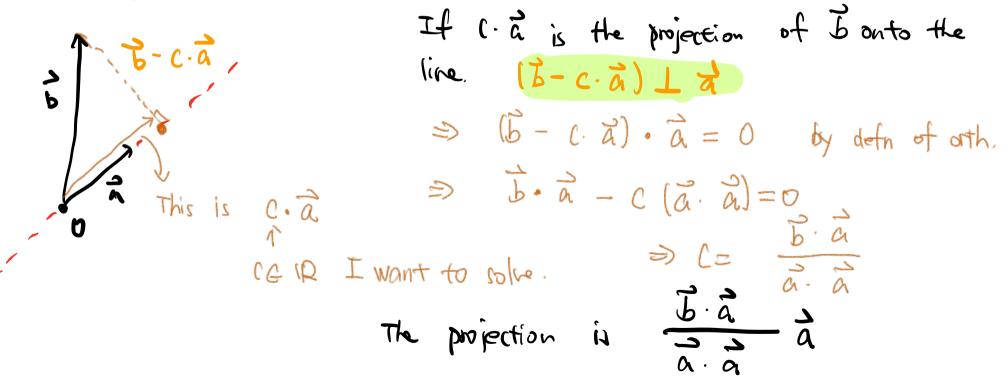
(A) (A) & &

Strang Sections 4.1 – Orthogonality of the Four Subspaces and Section 4.2 - Projections

Projection onto a Line

Orthogonal Projection of a Vector onto a Line

Let $\vec{a} = (a_1, a_2, \dots, a_m) \in \mathbb{R}^m$ be the direction of a line that goes through the origin, and let $\vec{b} = (b_1, b_2, \dots, b_m) \in \mathbb{R}^m$. We are interested in finding the projection \vec{p} of \vec{b} onto the line in the direction of \vec{a} .



Application (xn. Yn) < best linear fit. Income = C. Education Level

(x2. Y1)

(x1, Y1)

* Education level

First Vector: date of Edu level
$$\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = x$$
Second Vector: date of Incom $\begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix} = y$
Question of bot linear fit. $y \times c \cdot x \Rightarrow c = \frac{y \cdot x}{x \cdot x}$

Orthogonal Projection of a Vector onto a Line

- If $\vec{b} = \vec{a} \implies \hat{x} = 1$, and the projection of \vec{a} onto \vec{a} is itself $\implies P\vec{a} = \vec{a}$.
- If \vec{b} is orthogonal to \vec{a} , then $\vec{a}^T \vec{b} = 0$, and therefore $\vec{p} = 0$.

To find the projection matrix P, we ask:

"What matrix should multiply \vec{b} such that the outcome is \vec{p} ?"

We want to find P, such that $P\vec{b} = \vec{p}$.

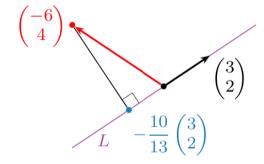
$$\implies P\vec{b} = \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} \vec{a} = \vec{a} \frac{\vec{a}^T \vec{b}}{\vec{a}^T \vec{a}} = \frac{\vec{a} \vec{a}^T}{\vec{a}^T \vec{a}} \vec{b} \implies P = \frac{\vec{a} \vec{a}^T}{\vec{a}^T \vec{a}}$$

Example

Compute the orthogonal projection of $x = \begin{pmatrix} -6 \\ 4 \end{pmatrix}$ onto the line L spanned

by
$$u = \begin{pmatrix} 3 \\ 2 \end{pmatrix}$$
.

$$y = \operatorname{proj}_{L}(x) = \frac{x \cdot u}{u \cdot u} u = \frac{-18 + 8}{9 + 4} {3 \choose 2} = -\frac{10}{13} {3 \choose 2}.$$



Example

Find the projection \vec{p} of $\vec{b} = (1, 1, 2)$ onto $\vec{a} = (-2, 3, 1)$.

Find the projection matrix
$$P$$
, such that $\vec{p} = P\vec{b}$.

Projection onto a Subspace

Let $\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n \in \mathbb{R}^m$ be a set of linearly independent vectors, and let S be a

subspace, such that:
$$S = \operatorname{span} \left\{ \vec{a}_1, \vec{a}_2, \dots, \vec{a}_n \right\} \subset \mathbb{R}^m$$
 Subspace, such that:
$$S = \operatorname{span} \left\{ \vec{a}_1, \vec{a}_2, \dots, \vec{a}_n \right\} \subset \mathbb{R}^m$$

We want to project $\vec{b} \in \mathbb{R}^m$ onto S, i.e., we want to find a projection \vec{p} of \vec{b} onto S, such that the combination

$$ec{p}=\hat{x}_1ec{a}_1+\hat{x}_2ec{a}_2+\cdots+\hat{x}_nec{a}_n$$

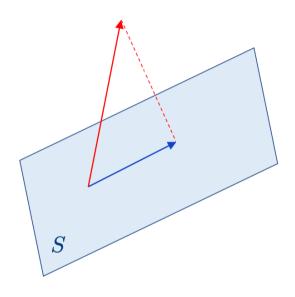
is closest to the vector \vec{b} . Note that \vec{p} can be written as

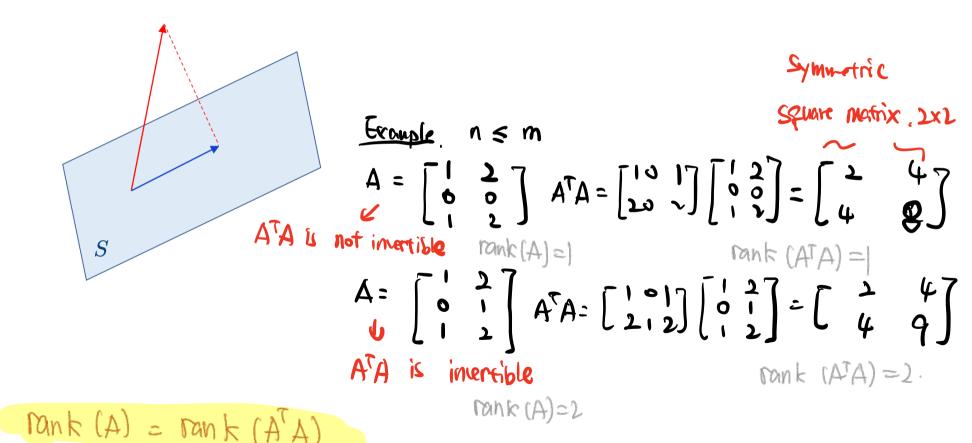
$$ec{p}=egin{bmatrix} ec{a}_1 & ec{a}_2 & \dots & ec{a}_n \end{bmatrix} egin{bmatrix} \hat{x}_1 \ \hat{x}_2 \ dots \ \hat{x} \end{pmatrix} = A \hat{x} \quad ag{5} = C_0 \ ag{5}$$

$$\vec{p} = \begin{bmatrix} \vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n \end{bmatrix} \begin{bmatrix} \hat{x}_1 \\ \hat{x}_2 \\ \vdots \\ \hat{x}_n \end{bmatrix} = A \hat{x} \iff S = Col(A)$$
Remark! if bit Col(A), $Ax = b$ don't have a solution have a solution have a solution fined p (nearest to b) & Col(A) so that $Ax = b$ will

" MI (A) = ((D)(A)) - ") First, we must find the vector $\vec{\hat{x}}$, then we find \vec{p} , and then we find the projection

ATA is of size IR nxn (Square matrix, Symmetrix Matrix), AT be IRn





When is $A^{T}A$ invertible? Nout Required **Theorem**: $A^T A$ is invertible if and only if A has linearly independent columns.

Theorem:
$$A^T A$$
 is invertible if and only if A has linearly independent columns.

The constant $A^T A$ is invertible if and only if A has linearly independent columns.

Firstly I'll Show
$$Nu(A) = Nu(A^TA) \Rightarrow dim(Nu(A)) = dim(Nu(A^TA))$$

This means for a vector $x \in \mathbb{R}^n$ Us
$$\Delta x = 0 \quad d \Rightarrow \Delta^T \Delta x = 0$$

$$Tank(A) = tank(A^TA)$$

$$Ax = 0 \quad A^{T}Ax = 0$$

$$A^{T}Ax = A^{T}(Ax) = A^{T}b = 0$$

$$A^{T}Ax = 0 \Rightarrow Ax = 0$$

$$A^{T}Ax = 0 \Rightarrow x^{T}(A^{T}Ax) = x^{T}0 = 0 \Rightarrow (Ax)^{T}Ax = 0 \Rightarrow Ax = 0$$

$$(Ax)^{T}Ax$$

$$(Ax)^{T}Ax$$

$$(Ax)^{T}Ax$$

$$(Ax)^{T}Ax$$

$$(Ax)^{T}Ax$$

$$(Ax)^{T}Ax$$

$$(Ax)^{T}Ax$$

$$(Ax)^{T}Ax$$

$$(Ax)^{T}Ax$$

Examples

Example: Let
$$A = \begin{bmatrix} 1 & 0 \\ 1 & 1 \\ 1 & 2 \end{bmatrix}$$
 and $\vec{b} = \begin{bmatrix} 6 \\ 0 \\ 0 \end{bmatrix}$. Find \vec{p} , the projection of \vec{b} onto

 $\operatorname{Col} A$, and find the projection matrix P.

Finding projection
$$\vec{b} - \vec{\beta} \perp \omega(A)$$

Solution
$$P = P J$$
. $P = A (A^T A)^T \Delta^T$

$$A^{T}A = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 2 \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 3 & 3 \\ 3 & 5 \end{bmatrix}$$

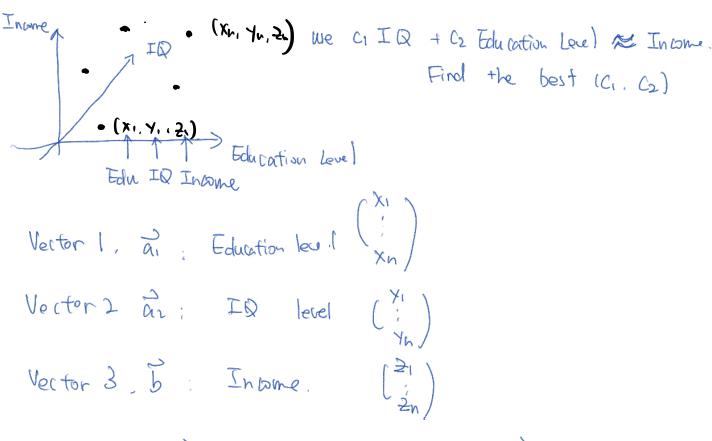
$$P = A \cdot \begin{bmatrix} \frac{3}{3} & \frac{3}{5} \end{bmatrix}^{-1} A^{T} = \frac{1}{5} \begin{bmatrix} \frac{5}{2} & \frac{2}{-1} \\ \frac{1}{2} & \frac{2}{5} \end{bmatrix}$$

Solving
$$\overrightarrow{A} \overrightarrow{b} = \overrightarrow{A} \overrightarrow{A} \overrightarrow{x}$$

$$\Rightarrow \overrightarrow{X} = (\overrightarrow{A}^T \overrightarrow{A})^{-1} \overrightarrow{A}^T \overrightarrow{b}$$

$$\Rightarrow \overrightarrow{P} = \overrightarrow{A} \overrightarrow{x}$$

$$= \overrightarrow{A} (\overrightarrow{A}^T \overrightarrow{A})^{-1} \overrightarrow{A}^T \overrightarrow{b}$$



C1. ai + C2. az best guess of b

A = [ai . az] E R n > how many features I we.

number of data

all the Eda all the IQ

Projection Matrix. A
$$(A^TA)^TA^Tb$$
 $\leftarrow C_1\overline{a_1} + C_2\overline{a_2}$
this is the coefficient
$$\begin{bmatrix} C_1 \\ C_2 \end{bmatrix} = (A^TA)^TA^Tb$$

$$\begin{bmatrix} C_1 \\ R^{2x_2} \\ R^{2x_1} \\ R^{2x_2} \end{bmatrix} \Rightarrow R^2$$

Review for Today, Ax = b may not have solution # Usr $< \# E_8$ b & col(A), Find $P \in col(A)$

P is the nearest one to B = P-B 161(A)

Answer: Projection Matrix $P = A(A^TA^TA^Tb$ (by Ax = b, left multiply A^T

> > rank (ATA) = rank (A)

So if A's fall Glumn back | column were are linear inch. then A'A is invertible.

Applications (liver regression / Econometrics)