$A \in \mathbb{R}^{47 \times 32}$

Which of the following is not possible
$\operatorname{rank}(A)=40$ because rank $\leqslant m$. $\tan k \leqslant n$$\operatorname{rank}(A)=32$, linear system $A x=\quad A \times=b . \quad A \in R^{[7 \times 32}$
$b, b \in \mathbb{R}^{47}$ have infinite solutions \in rank $=\# \operatorname{Var} \rightarrow \operatorname{dim}(\operatorname{Nul}(A))=0$
\# 32 variables
\#4] Equation.
$\operatorname{rank}(A)=32$, linear system $A x=$
$b, b \in \mathbb{R}^{47}$ have no solutions
$\operatorname{rank}(A)=32$, linear system
$A^{\top} x=b, b \in \mathbb{R}^{32}$ have no solution
$A^{\top} x=b . \quad A^{\top} \in \mathbb{R}^{32 \times 47}$
\# 32 Equation \#47 Variables,
$\operatorname{rank}(A)=32=\# E q \Rightarrow A^{\top}$ is a full now rank matrix $\Rightarrow G \mid\left(A^{\top}\right)=\mathbb{R}^{32} \Rightarrow A^{\top} x=b$ at least have no
$A^{\top} x=b$. b $\in \mathbb{R}^{3 L}$. $\operatorname{rank}(A)=32$ must have infinite solutions!
 $\operatorname{dim}\left(\operatorname{Nal}\left(A^{\top}\right)\right)=47-32=15>0 \Rightarrow A^{\top} x=6$ must have have infinit solution

Suppose that A is a 3×2 matrix whose
Nullspace contains exactly one element. $\rightarrow N_{u} \mid(A)=\left\{\omega_{0}\right\} \rightarrow \operatorname{rank}(A)=2$
Which of the following would be a basis for
Row A ? $\rightarrow \operatorname{Row}(A) \subseteq \mathbb{R}^{2}$
$\bigcirc\{\overrightarrow{0}\} \quad \operatorname{dim}(\operatorname{Row}(A))=\operatorname{rank}(A)=2\} \Rightarrow \operatorname{Row}(A)=\mathbb{R}^{2}$
$\bigcirc\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right],\left[\begin{array}{l}0 \\ 1\end{array}\right]\right\}$ is a basis of \mathbb{R}^{2}.
O $\left\{\left[\begin{array}{l}1 \\ 0\end{array}\right]\right\}$
Contains 1 vector but there is insufficient
information to determine a basis
Contains 2 vectors but there is insufficient information to determine a basis

Checking Subspace

- If V is a subspace. check $\vec{v}_{1}, \vec{v}_{2} \in V \Rightarrow c_{1} \vec{v}_{1}+c_{2} \vec{v}_{2} \in V$
- If V is not a subspace, give me an example. shows that

$$
\vec{v}_{1}, \vec{v}_{1} \in V \text { but } c_{1} \vec{v}_{1}+c_{1} \vec{v}_{2} \in V
$$

Ex. $V=\left\{(x, y) \mid x^{2}-y^{2}=0\right\}$ is not a subspace

$$
\begin{aligned}
& \left.\vec{v}_{1}=(1,-1), \vec{v}_{2}=(1,+1) \text {, then } \vec{v}_{1}+\vec{v}_{2}=12,0\right) \& V \\
& \text { so } V \text { is not a subspece. } \\
& 2^{2}-0^{2} \neq 0
\end{aligned}
$$

Ex. a) all symmetric Matrix is a subspace.
b) all polymimals like $\left.f f \mid f(x)=\underset{\sim}{a} x^{2}+\underset{\pi}{b}+c\right\}_{1}^{a \cdot b}$ is a subspace
b)

$$
\begin{aligned}
& f_{1}=a_{1} x^{2}+b_{1} x+c_{1}, \quad f_{2}=a_{2} x^{2}+b_{2} x+c_{2} \\
& \Rightarrow d_{1} f_{1}+d_{2} f_{2}=\left(d_{1} a_{1}+d_{2}\right) x^{2}+\left(d_{1} b_{1}+d_{2} b_{1}\right) x+\left(d_{1} a_{1}+d_{2} c_{2}\right)
\end{aligned}
$$

what is the basis of b),
basis is not unique! You just heed to give an example
Δ just a way to provide a basis.

- $a=1 \quad b=0 \quad c=0 \quad f(x)=x^{2}$
- $a=0 \quad b=1 \quad c=0 \quad f(x)=x$
$-a=0 \quad b=0 \quad c=1 \quad f(x)=1$
b) is a subspace with dime 3 and basis is $\left\{x^{2}, x, 1\right\}$
a) Check symmetric matrix is subsper what is the basis? $\left(\begin{array}{ll}a_{11} & a_{12} \\ a_{21} & a_{22}\end{array}\right) \rightarrow a_{12}=a_{21}$

$$
\begin{array}{lllll}
-a_{11}=1 & a_{12}=0 & a_{22}=0 & \left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right) & 2 \times 2 \text { sym Matrix } \\
-a_{11}=0 & a_{12}=1 & a_{22}=0 & \left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right) & \text { is a vector pace } \\
-a_{11}=0 & a_{12}=0 & a_{22}=1 & \left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right) & \left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right)\right.
\end{array}
$$

Linear Algebra

Lecture 12
 Orthogonality and Projections

Dr. Ralph Chikhany

Motivation of projection

subspace

Question:

$$
y=2 x
$$

what is the noasest point on lice?

$$
\text { to }(a, b)
$$

Cases that live system don't have Solution
$\left\{\begin{array}{l}x=1 \\ 2 x=1\end{array}\right.$ is all use project to sues the best solution is all the point of $[x, 2 x)$ on red live $A=(1,1)$
$A x=b$ That don't have a solution
$6 \& \operatorname{col}(A)$

Strang Sections 4.1 - Orthogonality of the Four Subspaces and Section 4.2 - Projections

Projection onto a Line

Orthogonal Projection of a Vector onto a Line

Let $\vec{a}=\left(a_{1}, a_{2}, \ldots, a_{m}\right) \in \mathbb{R}^{m}$ be the direction of a line that goes through the origin, and let $\vec{b}=\left(b_{1}, b_{2}, \ldots, b_{m}\right) \in \mathbb{R}^{m}$. We are interested in finding the projection \vec{p} of \vec{b} onto the line in the direction of \vec{a}.

If $c \cdot \vec{a}$ is the projection of \vec{b} onto the line $(\vec{b}-c \cdot \vec{a}) \perp \frac{\vec{a}}{}$
$\Rightarrow(\vec{b}-c \cdot \vec{a}) \cdot \vec{a}=0$ by deft of orth.

$$
\Rightarrow \vec{b} \cdot \vec{a}-c(\vec{a} \cdot \vec{a})=0
$$

$$
\Rightarrow C=\frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}}
$$

The projection is $\frac{\vec{b} \cdot \vec{a}}{\vec{a} \cdot \vec{a}} \vec{a}$

First rector: date of Edh level $\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)=\vec{x}$
Second Vector: date of Income

$$
\left(\begin{array}{c}
y_{1} \\
\vdots \\
y_{n}
\end{array}\right)=\vec{y}
$$

Question of bat linear fit $\vec{y} \approx c \cdot \vec{x} \Rightarrow c=\frac{\vec{y} \cdot \vec{x}}{\vec{x} \cdot \vec{x}}$

$$
\frac{\overrightarrow{y \cdot \vec{x}}}{\vec{x} \cdot \vec{x}} \vec{x}
$$

Orthogonal Projection of a Vector onto a Line

- If $\vec{b}=\vec{a} \Longrightarrow \hat{x}=1$, and the projection of \vec{a} onto \vec{a} is itself $\Longrightarrow P \vec{a}=\vec{a}$.
- If \vec{b} is orthogonal to \vec{a}, then $\vec{a}^{T} \vec{b}=0$, and therefore $\vec{p}=0$.

To find the projection matrix P, we ask:
"What matrix should multiply \vec{b} such that the outcome is \vec{p} ?"
We want to find P, such that $P \vec{b}=\vec{p}$.

$$
\Longrightarrow P \vec{b}=\frac{\vec{a}^{T} \vec{b}}{\vec{a}^{T} \vec{a}}=\vec{a}=\frac{\vec{a}^{T} \vec{b}}{\vec{a}^{T} \vec{a}}=\frac{\vec{a} \vec{a}^{T}}{\vec{a}^{T} \vec{b}} \Longrightarrow P=\frac{\vec{a} \vec{a}^{T}}{\vec{a}^{T} \vec{a}}
$$

Example

Compute the orthogonal projection of $x=\binom{-6}{4}$ onto the line L spanned by $u=\binom{3}{2}$.

$$
y=\operatorname{proj}_{L}(x)=\frac{x \cdot u}{u \cdot u} u=\frac{-18+8}{9+4}\binom{3}{2}=-\frac{10}{13}\binom{3}{2} .
$$

Example

Find the projection \vec{p} of $\vec{b}=(1,1,2)$ onto $\vec{a}=(-2,3,1)$.

Find the projection matrix P, such that $\vec{p}=P \vec{b}$.

Projection onto a Subspace

Orthogonal Projection of a Vector onto a Subspace

Let $\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n} \in \mathbb{R}^{m}$ be a set of linearly independent vectors, and let S be a subspace, such that:
$\vec{a}_{1}, \cdots \vec{a}_{n}$ is the basis of S

$$
A \in \mathbb{R}^{m \times n}: n \leqslant m=\operatorname{span}\left\{\vec{a}_{1}, \vec{a}_{2}, \ldots, \vec{a}_{n}\right\} \subset \mathbb{R}^{m}
$$

We want to project $\vec{b} \in \mathbb{R}^{m}$ onto S, i.e., we want to find a projection \vec{p} of \vec{b} onto S, such that the combination

$$
\vec{p}=\hat{x}_{1} \vec{a}_{1}+\hat{x}_{2} \vec{a}_{2}+\cdots+\hat{x}_{n} \vec{a}_{n}
$$

\vec{p} is nearest to my \vec{b}
is closest to the vector \vec{b}. Note that \vec{p} can be written as

$$
\vec{p}=\left[\begin{array}{llll}
\vec{a}_{1} & \vec{a}_{2} & \ldots & \vec{a}_{n}
\end{array}\right]\left[\begin{array}{c}
\hat{x}_{1} \\
\hat{x}_{2} \\
\vdots \\
\hat{x}_{n}
\end{array}\right]=A \overrightarrow{\hat{x}} \quad \Leftrightarrow S=\operatorname{Col}(\mathbf{A})
$$

Remark.! if $b \notin \operatorname{col}(A)$, $A x=b$ don't have a Solution he a sole fined p (nearest to $b) \notin \operatorname{col}(A)$ so that $A x=b$ will

Orthogonal Projection of a Vector onto a Subspace
$" \mathrm{Nu}(\mathrm{A})=(\operatorname{col}(A))^{\perp 11}$
First, we must find the vector $\overrightarrow{\hat{x}}$, then we find \vec{p}, and then we find the projection matrix P.

$$
\vec{b}
$$

What is the sir of $A \in \mathbb{R}^{m \times n}(n \leqslant m)$

$$
A^{\top} A \text { is of size } \mathbb{R}^{n \times n} \text { (square matrix, Symmetric Matrix), } A^{\top} b \in \mathbb{R}^{n}
$$

$$
\begin{align*}
& -\vec{b}-\vec{p} \perp S \Rightarrow \vec{b}-\vec{p} \perp \operatorname{Col}(A)(\vec{b}-\vec{p} \in N \mid(\vec{A}) \\
& \text { - } \vec{p} \in S \quad \Rightarrow \vec{p} \in \Delta \mid(A) \quad \text { "Left Null space" } \\
& \vec{P} \in G \mid(A), \Rightarrow \vec{P}=A \vec{x} \quad \text { find the " } x \text { " } \\
& \Rightarrow(\vec{b}-A \vec{x}) \perp S\left(\vec{b}-A \vec{x} \in \operatorname{Nul}\left(A^{\top}\right)\right) \\
& \Rightarrow A^{\top} \cdot(\vec{b}-A \vec{x})=0 \text { (by deft of left Nun ser) } \\
& \begin{array}{l}
\Rightarrow A^{\top} \vec{b}=\underbrace{A^{\top} A}_{\text {square }} \vec{x} \text { n } \\
(n \leqslant m)
\end{array} \tag{P}
\end{align*}
$$

Orthogonal Projection of a Vector onto a Subspace

Orthogonal Projection of a Vector onto a Subspace

Ecanple. $n \leq m$
Symu-tric
sequare matix. 2×2

$$
\begin{aligned}
& A=\left[\begin{array}{ll}
1 & 2 \\
0 & 0 \\
1 & 2
\end{array}\right] A^{\top} A=\left[\begin{array}{ll}
1 & 1 \\
20 & 2
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 0 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
4 & 8
\end{array}\right] \\
& \text { of innertible rank }(A)=\left[\begin{array}{ll}
1 & 2 \\
0 & 1 \\
1 & 2
\end{array}\right] A^{\top} A=\left[\begin{array}{ll}
1 & 1 \\
2 & 1
\end{array}\right]\left[\begin{array}{ll}
1 & 2 \\
0 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{ll}
2 & 4 \\
4 & 9
\end{array}\right]
\end{aligned}
$$

$A^{\top} A$ is inerrible
$\operatorname{rank}\left(A^{\top} A\right)=2$.
$\operatorname{rank}(A)=\operatorname{rank}\left(A^{\top} A\right)$

When is $A^{T} A$ invertible? Nous Reguirod
Theorem: $A^{T} A$ is invertible if and only if A has linearly independent columns.
Ill prove $\quad \operatorname{Rank}(A)=\operatorname{tank}\left(A^{\top} A\right)=n \quad \tan \left(A^{\top} A\right) \quad \tan =n$. Ais fall Glume
Firstly $I^{\prime} l l$ show $\left.\operatorname{Nu|}(A)=\operatorname{Nu}\left(A^{\top} A\right) \Rightarrow \operatorname{dim}\left(N_{n \mid}(A)\right)=\operatorname{dim}\left(\operatorname{Nu}^{\top} A^{\top} A\right)\right)$ This means. for a rector $x \in \mathbb{R}^{n}$

$$
A x=0 \quad \Leftrightarrow \quad A^{\top} A x=0
$$

$\operatorname{rank}(A)=\operatorname{rank}\left(A^{\top} A\right)$
(1) $A x=0 \Rightarrow A^{\top} A x=0$

$$
A^{\top} A x=A^{\top}(A x)=A^{\top} \overrightarrow{0}=\overrightarrow{0}
$$

(2) $A^{\top} A x=0 \Rightarrow A x=0$

$$
\begin{aligned}
& A^{\top} A x=0 \Rightarrowx^{\top}\left(A^{\top} A x\right)=x^{\top} 0=0 \Rightarrow \underbrace{(A x}_{\|A x\|^{2}: \text { length of } A x \text { is } 0}) \\
& \frac{(A x)^{\top}}{\Lambda^{\top} A^{\top}} A x
\end{aligned}
$$

Examples
Example: Let $A=\left[\begin{array}{ll}1 & 0 \\ 1 & 1 \\ 1 & 2\end{array}\right]$ and $\vec{b}=\left[\begin{array}{l}6 \\ 0 \\ 0\end{array}\right]$. Find \vec{p}, the projection of \vec{b} onto
$\operatorname{Col} A$, and find the projection matrix P.
If A is full alumn rank, Then $A^{\top} A$ is invertible
finding projection $\left.\vec{b}-\begin{array}{l}\vec{p} \perp G \mid(A) \\ \vec{p} \in G(A)\end{array}\right\} \Rightarrow$ Solving $A^{\top} \vec{b}=A^{\top} A \vec{x}$

$$
\vec{P}=A \vec{x} \quad \vec{p} \in \operatorname{col}_{0}(A) \quad \Rightarrow \quad \vec{x}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}
$$

Solution $\vec{P}=P \vec{b} . \quad P=A\left(A^{\top} A\right)^{-1} A^{\top}$

$$
\Rightarrow \quad \vec{p}=A \vec{x}
$$

$$
\begin{aligned}
& A^{\top} A=\left[\begin{array}{ll}
1 & 1 \\
0 & 1 \\
\hline
\end{array}\right]\left[\begin{array}{ll}
1 & 0 \\
1 & 1 \\
1 & 2
\end{array}\right]=\left[\begin{array}{cc}
3 & 3 \\
3 & 5
\end{array}\right] \\
& P=A \cdot\left[\begin{array}{ll}
3 & 3 \\
3 & 5
\end{array}\right]^{-1} A^{\top}=\frac{1}{6}\left[\begin{array}{ccc}
5 & 2 & -1 \\
2 & 2 & 2 \\
-1 & 2 & 5
\end{array}\right]
\end{aligned}
$$

$$
=\underbrace{A\left(A^{\top} A\right)^{-1} A^{\top}}_{\text {projection matrix }} \stackrel{\rightharpoonup}{b}
$$

Ede IQ Income
Vector 1, \vec{a}_{1} : Education lees 1 $\left(\begin{array}{c}x_{1} \\ \vdots \\ x_{n}\end{array}\right)$
Vector 2 \vec{a}_{2} : ID level $\left(\begin{array}{c}y_{1} \\ \vdots \\ y_{n}\end{array}\right)$
Vector $3, \vec{b}:$ Income. $\left(\begin{array}{c}z_{1} \\ \vdots \\ z_{n}\end{array}\right)$
$c_{1} \cdot \overrightarrow{a_{1}}+c_{2} \cdot \overrightarrow{a_{2}}$ best guess of \vec{b}
$A=\left[\begin{array}{ll}\vec{a}_{1} & \overrightarrow{a_{2}} \\ a_{1} & \prod_{1}\end{array}\right] \in \mathbb{R} \mathbb{N}^{n \times 2}$ number of many features I use.
all the Ede all the IQ
Projection Matrix. $\quad A \underbrace{\left(A^{\top} A\right)^{-1} A_{\text {is the coefficient }}^{A^{\top} \vec{b}} \leftrightarrow c_{1} \vec{a}_{1}+c_{2} \vec{a}_{2}}_{\text {this }}$

$$
\left[\begin{array}{l}
c_{1} \\
c_{2}
\end{array}\right]=\underset{\mathbb{R}^{2 \times 2}}{\left(A^{\top} A\right)^{-1} A^{\top} \vec{b}^{2 \times n}} \overrightarrow{\mathbb{R}}^{n} \rightarrow \mathbb{R}^{2}
$$

Review for Today,
$A x=b$ may not have Solution \#V or $\leqslant \# E_{q}$ $b \in \operatorname{col}(A)$. Find $\vec{P} \in \operatorname{col}(A)$ $n<m$

$$
\vec{p} \text { is the nearest one to } \vec{b} \Leftarrow \vec{p}-\vec{b} \perp \operatorname{col}(A)
$$

Answer : Projection Matin: $\vec{P}=A\left(A^{\top} A\right)^{-1} A^{\top} b$

$$
\begin{aligned}
\text { (by } & A x=b, \quad \text { left multiply } A^{\top} \\
& A^{\top} A x=A^{\top} b \quad A^{\top} A \text { is a square } \\
\Rightarrow & \left.x=\left(A^{\top} A\right)^{-1} A^{\top} b\right) \\
& \operatorname{rank}\left(A^{\top} A\right)=\operatorname{rank}(A)
\end{aligned}
$$

So if A is full Glume vark/colwmn vel are linear inch. then $A^{\top} A$ is invertible.

Applications: (linear regression/Econonetrics)

