

Lecture 11

The Four Fundamental Subspaces

Dr. Ralph Chikhany

Strang Sections 3.5 – Dimensions of the Four Subspaces

Matrix Subspaces

The Subspaces Associated with a Matrix

Consider an $m \times n$ matrix $A = [\vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n]$, where $\vec{a}_i \in \mathbb{R}^m \ (1 \le i \le n)$. Then, the four fundamental subspaces associated with A are:

- (1) The column space $\operatorname{Col} A=\operatorname{span}\{\operatorname{pivot\ columns}\}\subset\mathbb{R}^m$
- (2) The row space Row $A = \operatorname{Col} A^T \subset \mathbb{R}^n$
- (3) The null space $\operatorname{Nul} A = \left\{ \vec{x} \big| A \vec{x} = \vec{0} \right\} \subset \mathbb{R}^n$
- (4) The left null space $\operatorname{Nul} A^T = \left\{ \vec{y} \middle| A^T \vec{y} = \vec{0} \right\} \subset \mathbb{R}^m$

The Subspaces Associated with a Matrix

Consider an $m \times n$ matrix $A = [\vec{a}_1 \quad \vec{a}_2 \quad \dots \quad \vec{a}_n]$, where $\vec{a}_i \in \mathbb{R}^m \ (1 \le i \le n)$.

Then, the four fundamental subspaces associated with A are:

- (1) The column space $\operatorname{Col} A=\operatorname{span}\{\operatorname{pivot\ columns}\}\subset\mathbb{R}^m$
- (2) The row space Row $A = \operatorname{Col} A^T \subset \mathbb{R}^n$
- (3) The nullspace Nul $A = \{\vec{x} | A\vec{x} = \vec{0}\} \subset \mathbb{R}^n$
- (4) The left nullspace Nul $A^T = \{\vec{y} | A^T \vec{y} = \vec{0}\} \subset \mathbb{R}^m$

If A is and $m \times n$ matrix with rank r, then

- (1) $\dim(\operatorname{Col} A) = r$
- (2) $\dim(\operatorname{Row} A) = r$
- (3) $\dim(\operatorname{Nul} A) = n r$
- (4) $\dim(\operatorname{Nul} A^T) = m r$

$$A = \begin{bmatrix} 1 & 3 & 5 & 0 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 1 & 3 & 5 & 1 & 9 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 0 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 1 & 3 & 5 & 1 & 9 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 0 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 1 & 3 & 5 & 1 & 9 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & 3 & 5 & 0 & 7 \\ 0 & 0 & 0 & 1 & 2 \\ 1 & 3 & 5 & 1 & 9 \end{bmatrix}.$$

Orthogonality

Recall

The dot product of two vectors $\vec{v} = (v_1, v_2, \dots, v_n)$ and $\vec{w} = (w_1, w_2, \dots, w_n)$ in \mathbb{R}^n is given by

$$\vec{v} \cdot \vec{w} = v_1 w_1 + v_2 w_2 + \dots + v_n w_n = \sum_{i=1}^n v_i w_i.$$

Theorem: $\vec{v} \cdot \vec{w} = 0$ if and only if \vec{v} and \vec{w} are orthogonal.

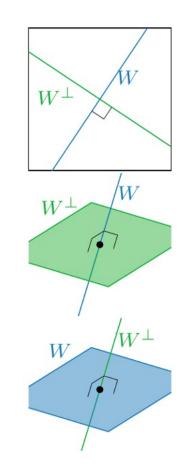
Orthogonal Subspaces

Two subspaces V and W of a vector space are orthogonal if every vector $\vec{v} \in V$ is orthogonal to every vector $\vec{w} \in W$. That is,

$$\vec{v}^T \vec{w} = 0$$
 for all $\vec{v} \in V$ and all $\vec{w} \in W$.

Every vector $\vec{x} \in \text{Nul } A$ is orthogonal to every row of A. Thus, Nul A and Row A are orthogonal subspaces of \mathbb{R}^n .

Every vector $\vec{y} \in \text{Nul } A^T$ is orthogonal to every column of A. Thus, $\text{Nul } A^T$ and Col A are orthogonal subspaces of \mathbb{R}^m .



Prove that every vector $\vec{y} \in \text{Nul}\,A^T$ is orthogonal to every $\vec{b} \in \text{Col}\,A$.

Prove that every vector $\vec{x} \in \text{Nul}\,A$ is orthogonal to every $\vec{b} \in \text{Row}\,A$.

The Fundamental Theorem of Linear Algebra

Let A be an $m \times n$ matrix with rank r.

- $\dim(\operatorname{Col} A) = r$
- $\dim(\operatorname{Row} A) = r$
- $\dim(\operatorname{Nul} A) = n r$
- $\dim(\operatorname{Nul} A^T) = m r$
- $(\operatorname{Nul} A)^{\perp} = \operatorname{Row} A$
- $\left(\operatorname{Nul} A^T\right)^{\perp} = \operatorname{Col} A$