

Lecture 10

Independence, Basis and Dimension

Dr. Ralph Chikhany

Basis of a Vector Space

What is a Basis?

A basis β for a vector space V is a set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$, such that

- (1) $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly independent, and
- (2) $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \text{ span } V.$

A basis β for a vector space V is a set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$, such that

- (1) $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly independent, and
- (2) $\vec{v}_1, \vec{v}_2, \ldots, \vec{v}_n \text{ span } V.$
 - standard basis for \mathbb{R}^2 is $\beta = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \end{bmatrix} \right\}$

• standard basis for
$$\mathbb{R}^3$$
 is $\beta = \left\{ \begin{bmatrix} 1\\0\\0 \end{bmatrix}, \begin{bmatrix} 0\\1\\0 \end{bmatrix}, \begin{bmatrix} 0\\0\\1 \end{bmatrix} \right\}$

:

• standard basis for
$$\mathbb{R}^n$$
 is $\beta = \left\{ \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix}, \begin{bmatrix} 0 \\ 1 \\ \vdots \\ 0 \end{bmatrix}, \dots, \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 1 \end{bmatrix} \right\}$

A basis β for a vector space V is a set of vectors $\{\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n\}$, such that

- (1) $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n$ are linearly independent, and
- (2) $\vec{v}_1, \vec{v}_2, \dots, \vec{v}_n \text{ span } V$.

• another basis for
$$\mathbb{R}^2$$
 is $\beta = \left\{ \begin{bmatrix} 1 \\ 0 \end{bmatrix}, \begin{bmatrix} 2 \\ 3 \end{bmatrix} \right\}$

- the pivot columns form a basis for $\operatorname{Col} A$
- ullet the null space solutions form a basis for Nul A

Vector as a Linear Combination of Basis Vectors

Theorem: If $\vec{v} \in V$, then there is a unique way to write \vec{v} as a linear combination of the basis vectors of V.

Find bases for the column and row spaces of
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 3 & 1 \\ 3 & 1 & -1 \end{bmatrix}$$
.

Find a basis for $\mathbb{M}_{2\times 2}$, the vector space of all 2×2 matrices.

Find a basis for the vector space of all 3×3 diagonal matrices.

Dimension of a Vector Space

Meaning of Dimension

The dimension of a vector space V is the number of vectors in a basis β for V.

- $\dim(\mathbb{R}^n) = n$
- For an $m \times n$ matrix A with rank(A) = r.
 - $-\dim(\operatorname{Col} A) = r$
 - $-\dim(\operatorname{Row} A) = r$
 - $-\dim(\operatorname{Nul} A) = n r$

Theorem and Proof Outline

If $\vec{v}_1, \ldots, \vec{v}_m$ and $\vec{w}_1, \ldots, \vec{w}_n$ are basis for a vector space V, then m = n.

Theorem and Full Proof (Optional Reading)

If $\vec{v}_1, \ldots, \vec{v}_m$ and $\vec{w}_1, \ldots, \vec{w}_n$ are basis for a vector space V, then m = n.

Suppose n > m

Then $\beta_v = \{\vec{v}_1, \dots, \vec{v}_m\}$ is a basis. Then for $\vec{w}_1 \in V$ we have $\vec{w}_1 = a_{11}\vec{v}_1 + a_{21}\vec{v}_2 + \dots + a_{m1}\vec{v}_m$. Similarly, for $\vec{w}_2 \in V$ we have $\vec{w}_2 = a_{12}\vec{v}_1 + a_{22}\vec{v}_2 + \dots + a_{m2}\vec{v}_m$ In general, any $\vec{\omega}_i$ can be written as a linear combination of $\vec{v}_1, \dots, \vec{v}_m$.

$$\underbrace{[\vec{w}_1 \vec{w}_2 \dots \vec{w}_n]}_{W} = \underbrace{[\vec{v}_1 \vec{v}_2 \dots \vec{v}_m]}_{V} \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & & & & \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$
Notice

Notice that the matrix (call it A) is short and wide since we assumed n > m. Thus $A\vec{x} = \vec{0}$ has a nonzero solution.

$$A\vec{x} = \vec{0} \Rightarrow VA\vec{x} = \vec{0} \Rightarrow W\vec{x} = \vec{0}$$

The columns of W are not linearly independent, they can't form a basis (contradiction with the initial assumption)

Suppose m > n.

Repeat the same steps and eventually we have:

$$\underbrace{[\vec{v}_1\vec{v}_2\dots\vec{v}_n]}_{V} = \underbrace{[\vec{w}_1\vec{w}_2\dots\vec{w}_m]}_{W} \begin{bmatrix} b_{11} & b_{12} & \cdots & b_{1m} \\ b_{21} & b_{22} & \cdots & b_{2m} \\ \vdots & & & & \\ b_{n1} & b_{m2} & \cdots & b_{nm} \end{bmatrix}$$

Notice that the matrix (call it B) is short and wide since we assumed m > n. Thus $B\vec{x} = \vec{0}$ has a nonzero solution.

$$B\vec{x} = \vec{0} \Rightarrow WB\vec{x} = \vec{0} \Rightarrow V\vec{x} = \vec{0}$$

The columns of V are not linearly independent, they can't form a basis (contradiction with the initial assumption)

Conclusion: The only way to avoid these contradictions is to have m = n.

Row Space of a Matrix

Theorem

The row space of an $m \times n$ matrix A is the span of the nonzero rows in REF(A).

For example, if
$$A = \begin{bmatrix} 1 & 2 \\ 2 & 4 \end{bmatrix}$$
, then $\text{REF}(A) = \begin{bmatrix} 1 & 2 \\ 0 & 0 \end{bmatrix} \Longrightarrow \text{Row } A = \text{span} \left\{ \begin{bmatrix} 1 \\ 2 \end{bmatrix} \right\}$.

Another way to compute the row space of A is by finding the column space of A^T , since the columns of A^T are equal to the rows of A.

 $\operatorname{Row} A = \operatorname{Col} A^T = \operatorname{span} \left\{ \text{linearly independent columns of } A^T \right\}$

Find a basis and the dimension of $\operatorname{Col} A$ and $\operatorname{Nul} A$, where

$$A = \begin{bmatrix} 1 & -3 & -6 & 0 \\ 5 & 0 & 0 & 4 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 5 \end{bmatrix}.$$

Find a basis and the dimension of $\operatorname{Col} A$ and $\operatorname{Nul} A$, where

$$A = \begin{bmatrix} 1 & -3 & -6 & 0 \\ 5 & 0 & 0 & 4 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 5 \end{bmatrix}.$$

Find a basis and the dimension of $\operatorname{Col} A$ and $\operatorname{Nul} A$, where

$$A = \begin{bmatrix} 1 & -3 & -6 & 0 \\ 5 & 0 & 0 & 4 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 5 \end{bmatrix}.$$