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Course notes adapted from Introduction to Linear Algebra by Strang (5% ed),
N. Hammoud’s NYU lecture notes, and Interactive Linear Algebra by
Margalit and Rabinoff, in addition to our text






Nullspace

Let A be an m X n matrix, such that A = [d; dy ...

], where @; € R™

(1 <i <mn). The nullspace of A consists of all solutions & to AT = 6 That is,

Nuld = {&| A7 =0}
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Nullspace

Let A be an m X n matrix, such that A = [@; dy ... @,], where @; € R™
(1 <i <mn). The nullspace of A consists of all solutions & to AZ = 0. That is,

Nuld = {&| A7 =0}
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The nullspace of A is a subspace of R".






REF

An m X n matrix is in echelon or row-echelon form (REF) if:
(1) All rows consisting entirely of zeros lie beneath all nonzero rows.
(2) The first nonzero element in any row is called a pivot.

(3) Any pivot must lie to the right of any pivot above it.
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Pivot Columns vs. Free Columns

Pivot Columns: The first pivot column in any matrix A is the left-most
nonzero column. The top element in that column is called the first pivot or
pivot position. If the first pivot is zero, we swap rows to get a nonzero pivot. A
pivot column in a matrix in REF is a column that contains ezactly one pivot.
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Pivot Columns vs. Free Columns
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RREF

To find the reduced row-echelon form (RREF) of a matrix A:

(1) First find the REF of A. That is, find the pivots and use them to make
all elements below them equal zero.

(2) Then, use the obtained pivots to make all elements above them equal zero.

(3) Lastly, make all pivots equal 1.

This procedure does not change the nullspace of the original matrix A.
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Let A = 7|. Write A in reduced row-echelon form and find its nullspace.
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What is the Rank of a Matrix?

The rank of an m X n matrix A is the number of pivots. We call this number 7.
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We think of the rank as the “true size” of a matrix. For example, the matrix

1 2 3. : .1 2 3
[1 9 3] is 2 x 3, however, its REF is [0 0 0

not giving any additional information; it is just a copy of the first row.
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What is the Rank of a Matrix? -

The rank of an m X n matrix A is the number of pivots. We call this @mbzfa
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not giving any additional information; it is just a copy of the first row.
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Theorem
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Let A be an m X n matrix such that m < n. In this case, we are guaranteed to
have free columns, and the system Ax = b will have more unknowns than equa-
tions, so it will have free variables associated with the free columns. Thus, this
system will always have either an infinite number of solutions or no solutions.
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Particular vs. Nullspace Solution

e The particular solution is obtained by setting the free variables to zero.
The particular solution solves AZ, = b.
Social Ghtisr by Gortig e (b & o)

e The nullspace solution is obtained by setting the right-hand-side, i.e., the
vector b, to 0. There are n — r nullspace solutions which solve A%, = 0.
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e The complete solution to AZ = b can be expressed as 7 = T AP e
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Rank

Recall: the rank r of a matrix A is the number of pivots.
e The r pivot columns are linearly independent.

e There are n — r free columns.

e Since Col A=span{pivot columns}, then the
column space spans an r-dimensional space.

e The “dimension” of the nullspace is n — 7.



Full Column Rank »= n
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Suppose A is an m X n matrix. Then A has full column rank r = n if:

e all columns of A are pivot columns

e all columns of A are linearly independent
e there are no free columns — no free solutions

o NulA={0}  # Frer Giiobly = n—r =0

o if AZ=Db has a solution, then it has exactly one solution.



Full Row Rank » = m
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e all rows of A are linearly independent (i
e there are n — r = n — m nullspace solutions

¥ ¢ The column space of A spans all of R™
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Rank and Solvability

Let A be an m X n matrix with rank . The solutions to AZ = b can be classified
as follows:

(1) r=m, 7 =n => square invertible =—> AZ = b has 1 solution

(2) r=m, r <n => short and wide => AZ = b has an infinite
number of solutions

(3) r<m, r=n = tall and thin => AZ = b has 0 or 1 solution

(4) 7 <m, T <n => not full rank = AZ = b has either an
infinite number of solutions or no solutions



Let A be an m X n matrix with rank 7. The solutions to AZ = b can be classified
as follows:

(1) »=m, r =n = square invertible — AZ = b has 1 solution
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