

Lecture 7 Vector Spaces and Subspaces

Dr. Ralph Chikhany

Strang Sections 3.1 – Spaces of Vectors

Course notes adapted from *Introduction to Linear Algebra* by Strang (5th ed), N. Hammoud's NYU lecture notes, and *Interactive Linear Algebra* by Margalit and Rabinoff, in addition to our text

A vector space V defined over a field \mathbb{F} (\mathbb{R} in our case) consists of a set on which addition and scalar multiplication are defined so that for each pair of elements v and w in V, there is a unique element $v + w \in V$, and for each element $c \in \mathbb{R}$ and $v \in V$, there is a unique element $cv \in V$, s.t. the following conditions hold:

- (VS1) For all $v, w \in V$, v + w = w + v.
- (VS2) For all $u, v, w \in V$, (u + v) + w = u + (v + w).
- (VS3) There exists an element in V denoted by 0, s.t. v + 0 = v for each $v \in V$.
- (VS4) For each element $v \in V$, there exists an element $w \in V$, s.t. v + w = 0.

A vector space V defined over a field \mathbb{F} (\mathbb{R} in our case) consists of a set on which addition and scalar multiplication are defined so that for each pair of elements v and w in V, there is a unique element $v + w \in V$, and for each element $c \in \mathbb{R}$ and $v \in V$, there is a unique element $cv \in V$, s.t. the following conditions hold:

- (VS5) For each element $v \in V$, 1v = v.
- (VS6) For each pair of elements $c, d \in \mathbb{R}$, and each $v \in V$, (cd)v = c(dv).
- (VS7) For each element $c \in \mathbb{R}$, and each pair $v, w \in V$, c(v+w) = cv + cw.
- (VS8) For each pair of elements $c, d \in \mathbb{R}$, and each $v \in V$, (c+d)v = cv + dv.

- (VS1) For all $v, w \in V$, v + w = w + v.
- (VS2) For all $u, v, w \in V$, (u + v) + w = u + (v + w).
- (VS3) There exists an element in V denoted by 0, s.t. v + 0 = v for each $v \in V$.
- (VS4) For each element $v \in V$, there exists an element $w \in V$, s.t. v + w = 0.
- (VS5) For each element $v \in V$, 1v = v.
- (VS6) For each pair of elements $c, d \in \mathbb{R}$, and each $v \in V$, (cd)v = c(dv).
- (VS7) For each element $c \in \mathbb{R}$, and each pair $v, w \in V$, c(v + w) = cv + cw.
- (VS8) For each pair of elements $c, d \in \mathbb{R}$, and each $v \in V$, (c+d)v = cv + dv.

Note: All elements in the field \mathbb{R} are called scalars and all elements in the vector space V are called vectors.

Let S be a non-empty set, and let $\mathcal{F}(S,\mathbb{R})$ denote the set of all functions from S to \mathbb{R} . Two functions $f,g\in\mathcal{F}$ are called equal if f(s)=g(s) for all $s\in S$. Show that the set $\mathcal{F}(S,\mathbb{R})$ is a vector space with the operations of addition and scalar multiplication defined for $f,g\in\mathcal{F}$ and $c\in\mathbb{R}$ by

$$(f+g)(s) = f(s) + g(s)$$
 and $(cf)(s) = c[f(s)]$

for all $s \in S$.

Let S be a non-empty set, and let $\mathcal{F}(S,\mathbb{R})$ denote the set of all functions from S to \mathbb{R} . Two functions $f,g\in\mathcal{F}$ are called equal if f(s)=g(s) for all $s\in S$. Show that the set $\mathcal{F}(S,\mathbb{R})$ is a vector space with the operations of addition and scalar multiplication defined for $f,g\in\mathcal{F}$ and $c\in\mathbb{R}$ by

$$(f+g)(s) = f(s) + g(s)$$
 and $(cf)(s) = c[f(s)]$

for all $s \in S$.

Subspaces

Solving Systems of Equations

A set $W \subset V$ is a subspace of a vector space V if for all vectors $v, w \in W$ and $c \in \mathbb{R}$ if

- $(1) v + w \in W$
- (2) $cv \in W$
- (3) $0 \in W$

W itself is a vector space.

Consider the vector space $\mathbb{M}_{2\times 2}(\mathbb{R})$. Show that U (the set of all upper triangular matrices) and D (the set of all diagonal matrices) are subspaces of $\mathbb{M}_{2\times 2}(\mathbb{R})$.

Consider the vector space $\mathbb{M}_{2\times 2}(\mathbb{R})$. Show that U (the set of all upper triangular matrices) and D (the set of all diagonal matrices) are subspaces of $\mathbb{M}_{2\times 2}(\mathbb{R})$.

Column Space

Column Space

Let $A \in \mathbb{M}_{m \times n}(\mathbb{R})$, such that $A = [\vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n]$, where $\vec{a}_i \in \mathbb{R}^m$ $(1 \le i \le n)$. The column space of A consists of all possible linear combinations of the columns of A. That is,

$$\operatorname{Col} A = \operatorname{span}\{\vec{a}_1, \vec{a}_2, \dots, \vec{a}_n\}$$

To solve $A\vec{x} = \vec{b}$, you must express \vec{b} as a linear combination of the columns of A. Thus, \vec{b} has to be in the column space of A, otherwise we won't be able to find a solution for the system $A\vec{x} = \vec{b}$.

Column Space

The column space of A is a subspace of \mathbb{R}^m .

$$A = [\vec{a}_1 \ \vec{a}_2 \ \dots \ \vec{a}_n] = \left[\left(egin{array}{c} a_{11} \ a_{21} \ dots \ a_{m1} \end{array}
ight) \left(egin{array}{c} a_{12} \ a_{22} \ dots \ a_{m2} \end{array}
ight) \dots \left(egin{array}{c} a_{1n} \ a_{2n} \ dots \ a_{mn} \end{array}
ight)
ight]$$

Therefore,
$$\operatorname{Col} A = \operatorname{span} \left\{ \begin{pmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{m1} \end{pmatrix}, \begin{pmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{m2} \end{pmatrix}, \dots, \begin{pmatrix} a_{1n} \\ a_{2n} \\ \vdots \\ a_{mn} \end{pmatrix} \right\} \subset \mathbb{R}^m.$$

