Row Space, Column Space and Null Space

March 2, 2024

Example: Finding a basis for the Row Space and Column Space of ${\cal A}$

Let

$$A = \begin{bmatrix} 1 & 1 & 4 & 1 & 2 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 1 & -1 & 0 & 0 & 2 \\ 2 & 1 & 6 & 0 & 1 \end{bmatrix}$$

Find a basis for the row space of A. We must reduce A:

$$\begin{bmatrix} 1 & 1 & 4 & 1 & 2 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 1 & -1 & 0 & 0 & 2 \\ 2 & 1 & 6 & 0 & 1 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 1 & 4 & 1 & 2 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & -2 & -4 & -1 & 0 \\ 0 & -1 & -2 & -2 & -3 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 4 & 1 & 2 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & -1 & -2 \end{bmatrix}$$
$$\rightarrow \begin{bmatrix} 1 & 1 & 4 & 1 & 2 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

• The first column, the second column and the fourth column are pivot columns (there exists a pivot). Thus the basis of the column space is the first column, the second column and the fourth column of A, *i.e.*

$$\operatorname{col}(A) = \operatorname{span} \left\{ \begin{bmatrix} 1\\0\\0\\1\\2 \end{bmatrix}, \begin{bmatrix} 1\\1\\0\\-1\\1 \end{bmatrix}, \begin{bmatrix} 1\\1\\1\\0\\0 \end{bmatrix} \right\}$$

• The bais of the row space can directly get from the row echelon form (the non-zero rows of the row echelon form)

$$\operatorname{row}(A) = \operatorname{span} \left\{ \begin{bmatrix} 1\\1\\4\\1\\2 \end{bmatrix}, \begin{bmatrix} 0\\1\\2\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\1\\2 \end{bmatrix} \right\}$$

Example: Finding a basis for the nullspace of A

Let

$$A = \begin{bmatrix} 1 & 1 & 4 & 1 & 2 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & 0 & 0 & 1 & 2 \\ 1 & -1 & 0 & 0 & 2 \\ 2 & 1 & 6 & 0 & 1 \end{bmatrix}$$

We need to solve the system Ax = 0:

1	1	4	1	2	0		1	0	2	0	1	0
0	1	2	1	1	0		0	1	2	0	$^{-1}$	0
0	0	0	1	2	0	\rightarrow	0	0	0	1	2	0
1	$^{-1}$	0	0	2	0		0	0	0	0	0	0
2	1	6	0	1	0		0	0	0	0	0	0

Therefore, $x_3 = s$ and $x_5 = t$ are free parameters. The solution to the system is given by

$$x = \begin{bmatrix} -2s - t \\ -2s + t \\ s \\ -2t \\ t \end{bmatrix} = \begin{bmatrix} -2 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix} s + \begin{bmatrix} -1 \\ 1 \\ 0 \\ -2 \\ 1 \end{bmatrix} t$$

Nul(A) = span
$$\left\{ \begin{bmatrix} -2 \\ -2 \\ 1 \\ 0 \\ 0 \end{bmatrix}, \begin{bmatrix} -1 \\ 1 \\ 0 \\ -2 \\ 1 \end{bmatrix} \right\}$$

 \mathbf{so}