# Row Space, Column Space and Null Space 

March 2, 2024

## Example: Finding a basis for the Row Space and Column Space of $A$

Let

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 4 & 1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 \\
1 & -1 & 0 & 0 & 2 \\
2 & 1 & 6 & 0 & 1
\end{array}\right]
$$

Find a basis for the row space of $A$.
We must reduce $A$ :

$$
\begin{aligned}
{\left[\begin{array}{ccccc}
1 & 1 & 4 & 1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 \\
1 & -1 & 0 & 0 & 2 \\
2 & 1 & 6 & 0 & 1
\end{array}\right] } & \rightarrow\left[\begin{array}{ccccc}
1 & 1 & 4 & 1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & -2 & -4 & -1 & 0 \\
0 & -1 & -2 & -2 & -3
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lllll}
1 & 1 & 4 & 1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & -1 & -2
\end{array}\right] \\
& \rightarrow\left[\begin{array}{lllll}
1 & 1 & 4 & 1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 \\
0 & 0 & 0 & 0 & 0
\end{array}\right]
\end{aligned}
$$

- The first column, the second column and the fourth column are pivot columns (there exists a pivot). Thus the basis of the column space is the first column, the second column and the fourth column of $A$, i.e.

$$
\operatorname{col}(A)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
0 \\
0 \\
1 \\
2
\end{array}\right],\left[\begin{array}{c}
1 \\
1 \\
0 \\
-1 \\
1
\end{array}\right],\left[\begin{array}{l}
1 \\
1 \\
1 \\
0 \\
0
\end{array}\right]\right\}
$$

- The bais of the row space can directly get from the row echelon form (the non-zero rows of the row echelon form)

$$
\operatorname{row}(A)=\operatorname{span}\left\{\left[\begin{array}{l}
1 \\
1 \\
4 \\
1 \\
2
\end{array}\right],\left[\begin{array}{l}
0 \\
1 \\
2 \\
1 \\
1
\end{array}\right],\left[\begin{array}{l}
0 \\
0 \\
0 \\
1 \\
2
\end{array}\right]\right\}
$$

## Example: Finding a basis for the nullspace of $A$

Let

$$
A=\left[\begin{array}{ccccc}
1 & 1 & 4 & 1 & 2 \\
0 & 1 & 2 & 1 & 1 \\
0 & 0 & 0 & 1 & 2 \\
1 & -1 & 0 & 0 & 2 \\
2 & 1 & 6 & 0 & 1
\end{array}\right]
$$

We need to solve the system $A x=0$

$$
\left[\begin{array}{ccccc|c}
1 & 1 & 4 & 1 & 2 & 0 \\
0 & 1 & 2 & 1 & 1 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 \\
1 & -1 & 0 & 0 & 2 & 0 \\
2 & 1 & 6 & 0 & 1 & 0
\end{array}\right] \rightarrow\left[\begin{array}{ccccc|c}
1 & 0 & 2 & 0 & 1 & 0 \\
0 & 1 & 2 & 0 & -1 & 0 \\
0 & 0 & 0 & 1 & 2 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0
\end{array}\right]
$$

Therefore, $x_{3}=s$ and $x_{5}=t$ are free parameters. The solution to the system is given by

$$
x=\left[\begin{array}{c}
-2 s-t \\
-2 s+t \\
s \\
-2 t \\
t
\end{array}\right]=\left[\begin{array}{c}
-2 \\
-2 \\
1 \\
0 \\
0
\end{array}\right] s+\left[\begin{array}{c}
-1 \\
1 \\
0 \\
-2 \\
1
\end{array}\right] t
$$

so

$$
\operatorname{Nul}(A)=\operatorname{span}\left\{\left[\begin{array}{c}
-2 \\
-2 \\
1 \\
0 \\
0
\end{array}\right],\left[\begin{array}{c}
-1 \\
1 \\
0 \\
-2 \\
1
\end{array}\right]\right\}
$$

