Linear Algebra Cheat Sheet

Yiping Lu

January 2024

1 Projection and Least Square

Approximately solve Ax = b equals to project b to col(A)

- $\bullet \ x = (A^{\top}A)^{-1}A^{\top}b$
- Projection Matrix $P = A(A^{\top}A)^{-1}A^{\top}$ (Projection of b to col(A) is Ax, i.e.Pb = Ax)
- $\operatorname{rank}(A^{\top}A) = \operatorname{rank}(A)$ so if A is full column rank (or columns of A is a basis of $\operatorname{col}(A)$) then $A^{\top}A$ is invertible
- application: best linear fit

Orthogonal Vectors $\{q_1, \cdots, q_n\}_{i=1}^n$ satisfies

- $q_i^{\top} q_i = 1$
- $q_i^{\top} q_i = 0$ for $i \neq j$

 $\{q_1,\cdots,q_n\}_{i=1}^n$ are orthogonal vectors then q_1,\cdots,q_n are linear independent Let $Q=[q_1,\cdots,q_n]$, then $Q^\top Q=I$. QQ^\top may not be I but it's the projection matrix to Q.

Furthermore if Q is a square matrix , then we call Q is a orthonogal matrix. For orthogonal matrix we have $Q^\top Q = QQ^\top = I$ and $Q^\top = Q^{-1}$

Project
$$b$$
 to Q is $QQ^{\top}b = (q_1^{\top}b)q_1 + (q_2^{\top}b)q_2 + \dots + (q_n^{\top}b)q_n$. $(Q^{\top}b = \begin{bmatrix} q_1^{\top}b\\q_2^{\top}b\\\dots\\q_n^{\dagger} \end{bmatrix})$

G-S The Gram-Schmidt process is a method used in linear algebra for orthogonalizing a set of vectors. Given a set of linearly independent vectors $\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k$ in \mathbb{R}^n , the Gram-Schmidt process produces a set of orthogonal vectors $\mathbf{u}_1, \mathbf{u}_2, \dots, \mathbf{u}_k$ as follows:

1. Set $\mathbf{u}_1 = \mathbf{v}_1$.

2. For i = 2 to k, compute

$$\mathbf{u}_i = \mathbf{v}_i - \sum_{j=1}^{i-1} \frac{\langle \mathbf{v}_i, \mathbf{u}_j \rangle}{\langle \mathbf{u}_j, \mathbf{u}_j \rangle} \mathbf{u}_j$$

where $\langle \mathbf{x}, \mathbf{y} \rangle$ denotes the dot product of vectors \mathbf{x} and \mathbf{y} .

To normalize each vector to get an orthonormal set, compute

$$\mathbf{e}_i = rac{\mathbf{u}_i}{\|\mathbf{u}_i\|}$$

for i = 1 to k, where $\|\mathbf{u}_i\|$ is the Euclidean norm of \mathbf{u}_i .

This process orthogonalizes the set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots, \mathbf{v}_k\}$, ensuring that each \mathbf{u}_i is orthogonal to all previous \mathbf{u}_j for j < i. The last step, normalization, is optional if the goal is to obtain an orthonormal set.

QR-decompostion: $A=QR,\,Q$ is orthogonal (but not square), R is upper triangular

- \bullet Using G-S to calculate Q
- caluclate R by $Q^{\top}A$

2 Determinate

Four Basic Property

- (1) $\det([v_1, \dots, v_i, \dots, v_j, \dots, v_n]) = -\det([v_1, \dots, v_j, \dots, v_i, \dots, v_n])$ (switching i, j column make the determinate negative)
- $(2) \det(AB) = \det(A)\det(B)$
- (linear combination of single column)

$$- (3) \det([v_1 + v'_1, v_2, \cdots, v_n]) = \det([v_1, v_2, \cdots, v_n]) + \det([v'_1, v_2, \cdots, v_n])$$

$$- (4) \det([cv_1, v_2, \cdots, v_n]) = c\det([v_1, v_2, \cdots, v_n])$$

determinates of basic matrix

- $\det(I_n) = I$
- What is the determinate of a diagonal matrix?
- What is the determinate of an orthogonal matrix matrix?
- What is the determinate of a permutation matrix?
- What is the determinate of an elimination matrix?
- What is the determinate of a lower diagonal matrix?

Try to prove the following property:

- $\det([\vec{0}, v_1, v_2, \cdots, v_{n-1}]) = 0$
- $\det([c_1v_1, c_2v_2, \cdots, v_n]) = c_1c_2\det([v_1, v_2, \cdots, v_n])$
- $\det([v_1, v_1, v_2, \cdots, v_{n-1}]) = 0$ (A have two equal columns, then determinate is 0)
- $\det(cA) = c^n \det(A)$
- $det(A) = det(A^T)$ (hint:LU Decomposition)
- $\det(A^{-1}) = \frac{1}{\det(A)}$

Cofactor: $C_{ij} = (-1)^{i+j} M_{ij}$ where M_{ij} is the minor (determinate of $(n-1) \times (n-1)$ submatrix)

- Cofactor expansion
 - For rows $\det(A) = a_{i1}C_{i1} + a_{i2}C_{i2} + \dots + a_{in}C_{in}$
 - For columns $\det(A) = a_{1i}C_{1i} + a_{2i}C_{2i} + \dots + a_{ni}C_{ni}$
- Cramer Rule Consider a system of linear equations in matrix form Ax = b, where:
 - -A is an $n \times n$ matrix of coefficients.
 - -x is a column vector of unknowns x_1, x_2, \ldots, x_n .
 - -b is a column vector of constants.

Cramer's Rule states that if $det(A) \neq 0$, then the system has a unique solution. The solution for each unknown x_i is given by:

$$x_i = \frac{\det(A_i)}{\det(A)}$$

where:

- $-\det(A)$ is the determinant of the matrix A.
- $-A_i$ is the matrix formed by replacing the *i*-th column of A with the column vector b.
- $A^{-1} = \frac{1}{\det(A)} C^{\top}$, where C is the matrix of cofactors
- Hard Questions: What is $\det(C)$? $(\frac{1}{\det(A)^{n+1}}, \text{why?})$

Eigenvaule 3

Eigenvalue and eigenvectors means

$$Ax = \lambda x$$

 $\lambda \in \mathbb{R}$ is eigen value and $x \in \mathbb{R}^n$ is the eigne vector.

- λ is the solution of $p(\lambda) = \det(A \lambda I) = 0$
- $p(\lambda)$ is a n-the order polynomial (by cofactor expansion)
- $x \in \text{Nul}(A \lambda I)$

$$p(\lambda) = (-1)^n (\lambda - \lambda_1)(\lambda - \lambda_2) \cdots (\lambda - \lambda_n)$$

• $n \times n$ matrix have n eigen values

 $(n \times n \text{ matrix have } n \text{ don't means it has } n \text{ eigenvectors, if it has it can})$ be diagonalize (this means not every matrix can be diagonalize), example $\begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$, $p(\lambda) = -\lambda^2$ it has two eigenvalue 0 but only one egienvector. All matrix can't be diagnoalized will similar to this.)

If $\lambda_1, \dots, \lambda_n$ are distinct eigenvalues then eigenvectors x_1, \dots, x_n are linear independent which mens $X = [x_1, \dots, x_n]$ are invertible. **Diagnoalization** $A = X\Lambda X^{-1}$ where Λ is a diagnoal matrix, diagnoal

elements are eigen values.

Similar Matrix $A = XBX^{-1}$

- trace(A) = trace(B) = $\lambda_1 + \cdots + \lambda_n$
- $det(A) = det(B) = \lambda_1 \cdots \lambda_n$
- all A's eigenvectors are $[\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n]$, B's eigenvectors are $[\vec{b}_1, \vec{b}_2, \cdots, \vec{b}_n]$, then

$$X = [\vec{a}_1, \vec{a}_2, \cdots, \vec{a}_n][\vec{b}_1, \vec{b}_2, \cdots, \vec{b}_n]^{-1}$$

Symmetric Matrix $A = A^{\top}$

- eigenvectors x_1, x_2, \cdots, x_n are orthogonal
- $A = Q\Lambda Q^{\top}$, Q is orthogonal matrix (remember to normalize eigenvectors to unit vectors)
- $A = \sum_{i} \lambda_{i} \underbrace{x_{i} x_{i}^{\top}}_{\text{projection to } x_{i}}$ (we need x_{i} are unit vector)
- $\vec{x}^{\top} A \vec{x} = \sum_{i} \lambda_{i} (x_{i}^{\top} x)^{2}$

- Motivation: $\vec{x}^{\top} A \vec{x}$ for $\vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$ is a qudratic function respect to x_1, \dots, x_n
- Positive Definite Matrix: Symmetric matrix whose eigenvalue is positive $(\lambda_i > 0 \text{ for all } i)$

$$-\vec{x}^{\top}A\vec{x}$$
 is always positive $(\vec{x}^{\top}A\vec{x}, \vec{x} = \begin{bmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{bmatrix}$ is a quadratic function respect to variable x_1, \dots, x_n

respect to variable
$$x_1, \dots, x_n$$
)
$$-\underbrace{\vec{x}^\top A \vec{x}}_{\text{quadratic function who is always positive}} = \underbrace{\sum_{i} \lambda_i (x_i^\top x)^2}_{i}$$

Singular Value Decomposition

$$A = \underbrace{U}_{\text{orthogonal diag orthogonal}} \underbrace{\Sigma}_{\text{orthogonal}} \underbrace{V}^{\mathsf{T}}_{\text{orthogonal}}$$

- $A \in \mathbb{R}^{m \times n}$
- $U \in \mathbb{R}^{m \times m}, V \in \mathbb{R}^{n \times n}$
- $\Sigma \in \mathbb{R}^{m \times n}$

$$AA^{\top} = U\Sigma\Sigma^{\top}U^{\top}.A^{\top}A = V\Sigma^{\top}\Sigma V^{\top}$$

- $U = [u_1, \dots, u_n]$ then u_1, \dots, u_n are eigenvectors of AA^{\top}
- $V = [v_1, \dots, v_n]$ then v_1, \dots, v_n are eigenvectors of $A^{\top}A$

$$A = \sigma_1 u_1 v_1^{\top} + \sigma_2 u_2 v_2^{\top} + \dots + \sigma_r u_r v_r^{\top}$$
 where $r = \operatorname{rank}(A)$

•
$$u_1 = \frac{1}{\sigma_1} A v_1, v_1 = \frac{1}{\sigma_1} A^{\top} u_1$$

We have

$$\operatorname{rank}(A) = \operatorname{rank}(AA^\top) = \operatorname{rank}(A^\top A)$$

 $\mathbf{u}_1, \dots, \mathbf{u}_r$ is an orthonormal basis for the column space

is an orthonormal basis for the left nullspace $\mathcal{N}(\mathbf{A}^T)$ $\mathbf{u}_{r+1},\ldots,\mathbf{u}_m$

 $\mathbf{v}_1, \dots, \mathbf{v}_r$ is an orthonormal basis for the row space

 $\mathbf{v}_{r+1}, \dots, \mathbf{v}_n$ is an orthonormal basis for the nullspace $\mathcal{N}(\mathbf{A})$.

5 Linear Transform

- $\bullet\,$ check linear transform
 - Prove: check T(cx) = cT(x), T(x+y) = T(x) + T(y)
 - Disprove: counter example
 - $-\mathbb{P}_n$ polynomial of degree n.
- Change of Basis: https://2prime.github.io/files/linear/recitation11_sol.pdf