SECRET

NO PHOTOCOPY
This paper contains $\ldots \ldots$ pages

Page \qquad

NEWYORK UNIVERSITY

Linear Algebra Final Review
Subject: MATH-UA 140 Linear Algebra
Name of Examiners: \qquad

Year: 2024(Sem 2)
Time allow: 1001

Instruction to Candidate : (only on page 1)
(1) This paper contains \qquad questions.
(2) Candidates must answer \qquad questions.

Question No $\quad 1$

Diagonalize A and compute $V \mathbf{A} k V^{-1}$ to prove this formula for A^{k} :

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \text { has } A^{k}=\frac{1}{2}\left(\begin{array}{cc}
1+3^{k} & 1-3^{k} \\
1-3^{k} & 1+3^{k}
\end{array}\right) .
$$

and what is the meaning of $\lim _{k \rightarrow \infty} \frac{1}{3^{k}} A^{k}=\left(\frac{\mathbf{A}}{\mathbf{3}}\right)^{\boldsymbol{k}}$.

Solution:

The eigenvalues of A are 3 and 1 , and the corresponding eigenvectors are $v_{1}=(-1,1)$, $v_{2}=(1,1)$. Therefore, A can be diagonalized as $A=V \boldsymbol{A} V^{-1}$, where $V=\left[v_{1}, v_{2}\right]$, $\Lambda=\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$ and $V^{-1}=\left(\begin{array}{cc}-1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right) . A^{k}=V \Lambda^{k} V^{-1}=\frac{1}{2}\left(\begin{array}{ll}1+3^{k} & 1-3^{k} \\ 1-3^{k} & 1+3^{k}\end{array}\right)$. $\lim _{k \rightarrow \infty} \frac{1}{3^{k}} A^{k}=\lim _{k \rightarrow \infty} \frac{1}{2}\left(\begin{array}{cc}\frac{1}{3^{k}}+1 & \frac{1}{3^{k}}-1 \\ \frac{1}{3^{k}}-1 & \frac{1}{3^{k}}+1\end{array}\right)=\left(\begin{array}{cc}\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & \frac{1}{2}\end{array}\right)$ (the largest eigen vector)
Examination Requirements: NIL

SECRET

NO PHOTOCOPY
This paper contains pages
Page

NEWYORK UNIVERSITY
Linear Algebra Final Review

Subject: MATH-UA 140 Linear Algebra
Name of Examiners: \qquad

Instruction to Candidate : (only on page 1)
(1) This paper contains \qquad questions.
(2) Candidates must answer \qquad questions.

Householder Matin
Question No $\quad 2$

$$
P=u^{*} \text { is a projection }
$$

For u is a unit vector prove that $Q=I-2 u u^{\top}$ is an symmetric orthogonal matrix. Prove $\|Q x\|=\|x\| \cdot(*)$

$$
Q^{\top} Q=Q Q^{\top}=I
$$

Solution:
Q is symmetric because $u u^{\top}$ is symmetric.
Then $Q Q^{\top}=Q Q=Q^{2}=\left(I-2 u u^{\top}\right)^{2}=I-2 u u^{\top}-2 u u^{\top}+4 u \underbrace{u^{\top} u}_{u^{\top} u=\|u\|^{2}=1} u^{\top}=I-$ $4 u u^{\top}+4 u u^{\top}=I$

For all orthogonal matrix Q, we have

$$
\|Q x\|^{2}=(Q x)^{\top}(Q x)=x^{\top} Q^{\top} Q x=x^{\top} x=\|x\|^{2}
$$

for $Q^{\top} Q=I$
Year: 2024(Sem 2)
Time allow: 1001

SECRET

NO PHOTOCOPY
This paper contains $\ldots \ldots$ pages

Page \qquad

NEWYORK UNIVERSITY
Linear Algebra Final Review
Subject: MATH-UA 140 Linear Algebra
Year: 2024(Sem 2)
Name of Examiners: \qquad Time allow: 1001

Instruction to Candidate : (only on page 1)
(1) This paper contains \qquad questions.
(2) Candidates must answer \qquad questions.

Question No $\quad 3$

What are the four fundamental subspaces of $M=I-P$ in terms of the column space of P.

Solution

For a projection matrix P : (projection matrix is always symmetric)

- $x \in \operatorname{col}(P)=\operatorname{row}(P): \operatorname{Px}=\mathrm{x}$
- $x \in \operatorname{Nul}(P)=\operatorname{LeftNul}(P): \operatorname{Px}=0$

For matrix $I-P$

- $x \in \operatorname{col}(P)=\operatorname{row}(P):(\mathrm{I}-\mathrm{P}) \mathrm{x}=\mathrm{x}-\mathrm{Px}=\mathrm{x}-\mathrm{x}=0$
- $x \in \operatorname{Nul}(P)=\operatorname{LeftNul}(P):(\mathrm{I}-\mathrm{P}) \mathrm{x}=\mathrm{x}-\mathrm{Px}=\mathrm{x}-0=\mathrm{x}$
is a also a projection matrix.
Left Null space $=$ Right Null space $=$ Colume space of P.
Column space $=$ Row space $=$ orthogonal complement of the colume space of P.

Examination Requirements: NIL

SECRET

\qquad

NEWYORK UNIVERSITY

Linear Algebra Final Review
Subject: MATH-UA 140 Linear Algebra
Year: 2024(Sem 2)
Name of Examiners: \qquad Time allow: 1001

Instruction to Candidate : (only on page 1)
(1) This paper contains \qquad questions.
(2) Candidates must answer \qquad questions.

Question No $\quad 4$

P is a Projection Matrix, prove P is symmetric and $P^{2}=P$. What is the eigenvalue of Projection matrix P. Prove that $I-2 P$ is an orthogonal matrix

Solution

$P=A\left(A^{T} A\right)^{-1} A^{T}$ then

- $P^{2}=A \underbrace{\left(A^{T} A\right)^{-1} A^{T} A}_{=I}\left(A^{T} A\right)^{-1} A^{T}=A\left(A^{T} A\right)^{-1} A^{T}=P$
- $P^{T}=\left(A\left(A^{T} A\right)^{-1} A^{T}\right)^{T}=A^{T}\left(A^{T} A\right)^{-T} A=A\left(A^{T} A\right)^{-1} A^{T}$ (For $A^{T} A$ symmetric)

Eigenvalue is 1,0 (for $P^{2}=P$ so eigenvalues should satisfies $\lambda^{2}=\lambda$)
Since P is a projection matrix, we have $P=P^{T}$. To show that Q is an orthogonal matrix, we need to check that $Q Q^{T}=I$. We have

$$
\begin{gathered}
Q Q^{T}=(I-2 P)(I-2 P)^{T} \\
\cdot=(I-2 P)\left(I^{T}-2 P^{T}\right) \\
=(I-2 P)(I-2 P) \quad(\text { since } I \text { and } P \text { are symmetric) } \\
=I-4 P+4 P^{2}
\end{gathered}
$$

Since for a projection matrix we have $P^{2}=P$, this product is equal to $Q Q^{T}=I$, as required.
Examination Requirements: NIL

SECRET

NO PHOTOCOPY
This paper contains pages

Page \qquad

NEWYORK UNIVERSITY

Linear Algebra Final Review
Subject: MATH-UA 140 Linear Algebra
Name of Examiners: \qquad

Year: 2024(Sem 2)
Time allow: 1001

Instruction to Candidate : (only on page 1)
(1) This paper contains \qquad questions.
(2) Candidates must answer \qquad questions.

Question No $\quad 5$
If $A^{2}=-A$, what is the possible value of $\operatorname{det}(A)$.

Solution

$A^{2}=-A$ means $\operatorname{det}\left(A^{2}\right)=\operatorname{det}(-A)$ however

- $\operatorname{det}\left(A^{2}\right)=\operatorname{det}(A)^{2} \quad \operatorname{def}(A B)=\operatorname{def}(A) \operatorname{def}(B) \operatorname{det}(C \cdot A)=C^{n} A$
- $\operatorname{det}(-A)=(-1)^{n} \operatorname{det}(A)= \begin{cases}-\operatorname{det}(A) & \text { if } n \text { is odd } \\ \operatorname{det}(A) & \text { if } n \text { is even }\end{cases}$

Thus

$$
\operatorname{det}(A)^{2}= \begin{cases}-\operatorname{det}(A) & \text { if } n \text { is odd } \\ \operatorname{det}(A) & \text { if } n \text { is even }\end{cases}
$$

which means

$$
\operatorname{det}(A)=\left\{\begin{array}{l}
0,-1 \quad \text { if } n \text { is odd } \\
0,1 \quad \text { if } n \text { is even }
\end{array}\right.
$$

Examination Requirements: NIL

SECRET

\qquad

NEWYORK UNIVERSITY

Linear Algebra Final Review
Subject: MATH-UA 140 Linear Algebra
Name of Examiners: \qquad
Year: 2024(Sem 2)
Time allow: 1001

Instruction to Candidate : (only on page 1)
(1) This paper contains \qquad questions.
(2) Candidates must answer \qquad questions.

Question No
 \qquad 5

Suppose an $m \times n$ matrix A has rank r. What are the ranks of
(a) A^{T} ?
(b) $A A^{T}$?
(c) $A A^{T}+\lambda I(\lambda>0)$?
(d) $A^{T} A A^{T}$?

Solution

Answer 1
(A) r
(B) we showed in class it's r (page 17 in https://2prime.github.io/files/linear/ linearslide14filled.pdf)
(C) it's a positive definite matrix with all eigenvalues lareger than λ, think why.
(D) r (similar page 17 in https://2prime.github.io/files/linear/ linearslide14filled.pdf)

Answer 2 Using SVD

(A) $\operatorname{rank}\left(A^{T}\right)=\operatorname{dim}\left(\operatorname{row}\left(A^{T}\right)\right)=\operatorname{dim}(\operatorname{col}(A))=\operatorname{rank}(A)=r$.
(B) Let $A=U \Sigma V^{T}$ be a full SVD. Then,

$$
A A^{T}=\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T}=U \Sigma V^{T} V \Sigma^{T} U^{T}=U \Sigma^{2} U^{T}
$$

Thus, $U \Sigma^{2} U^{T}$ is a SVD of $A A^{T}$. If Σ has r positive singular values then so will Σ^{2}. Therefore, the rank of $A A^{T}$ is r.
(C) Since $I_{m}=U U^{T}$, the equation above yields $A A^{T}+\lambda I=U \Sigma^{2} U^{T}+\lambda I=U\left(\Sigma^{2}+\right.$ $\left.\lambda I_{m}\right) U^{T}$. Since $\Sigma^{2}+\lambda I=\operatorname{diag}\left(\sigma_{1}^{2}+\lambda, \ldots, \sigma_{r}^{2}+\lambda, \ldots, \lambda\right)$, the rank is m.
(D) $A^{T} A A^{T}=\left(U \Sigma V^{T}\right)^{T}\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T}=V \Sigma^{T} U^{T} U \Sigma V^{T} U^{T} U \Sigma V^{T}=$ $V \Sigma^{T} \Sigma \Sigma^{T} V^{T}=V \Sigma^{3} V^{T}$. Σ^{3} has r positive singular values as like Σ. Therefore, the rank is r.

Examination Requirements: NIL

SECRET

| NO PHOTOCOPY | | |
| :--- | :--- | :--- | :--- |
| This paper contains $\ldots \ldots$ | pages | |

Page \qquad

NEWYORK UNIVERSITY
Linear Algebra Final Review
Subject: MATH-UA 140 Linear Algebra
Name of Examiners: \qquad
Year: 2024(Sem 2)
Time allow: 1001
Instruction to Candidate : (only on page 1)
(1) This paper contains ___ questions.
(2) Candidates must answer \qquad questions.

Question No $\quad 6$

The following matrices have only one eigenvalue: 1 . What are the dimensions of the eigenspaces in each case?

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

For a matrix A, the eigenspace with eigenvalue λ is the kernel of the matrix $A-\lambda I$. Here we have $\lambda=1$, so we subtract I from each of the matrices above:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

and find the dimensions of the kernels.
The ranks of these matrices are $0,2,2,1$ respectively, so by the rank-nullity theorem the dimensions of the kernels are $3,1,1,2$.
Answer: 3, 1, 1, 2.

Examination Requirements: NIL

SECRET

NO PHOTOCOPY
This paper contains $\ldots \ldots$ pages

Page \qquad

NEWYORK UNIVERSITY
Linear Algebra Final Review
Subject: MATH-UA 140 Linear Algebra
Name of Examiners: \qquad

Year: 2024(Sem 2)
Time allow: 1001

Instruction to Candidate : (only on page 1)
(1) This paper contains \qquad questions.
(2) Candidates must answer \qquad questions.

Question No $\quad 7$
For $A \in \mathbb{R}^{n \times n}$ has singular value $\sigma_{1}, \cdots, \sigma_{n}$ prove

- $\operatorname{tr}\left(A^{\top} A\right)=\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}$
- $\operatorname{tr}\left(\left(A^{\top} A+\lambda I\right)^{-1} A^{\top} A\right)=\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\lambda}+\cdots+\frac{\sigma_{n}^{2}}{\sigma_{n}^{2}+\lambda}$

Very cimilar to $A\left(A^{\top} A\right)^{-1} A^{\top}$

Solution

Using SVD $A=U \Sigma V^{\top}$ Then we have

- $A^{\top} A=V \Sigma^{\top} \Sigma V^{\top}$ so $\operatorname{tr}\left(A^{\top} A\right)=\operatorname{tr}\left(\Sigma^{\top} \Sigma\right)=\sigma_{1}^{2}+\cdots+\sigma_{n}^{2}$
- $\left(A^{\top} A+\lambda I\right)=V\left(\Sigma^{\top} \Sigma+\lambda I\right) V^{\top},\left(A^{\top} A+\lambda I\right)^{-1}=V\left(\Sigma^{\top} \Sigma+\lambda I\right)^{-1} V^{\top}$

$$
\begin{aligned}
& \operatorname{trace}\left(\left(A^{\top} A+\lambda I\right)^{-1} A^{\top} A\right)=\operatorname{trace}\left(\left[\begin{array}{cccc}
\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\lambda} & 0 & \cdots & 0 \\
0 & \frac{\sigma_{2}^{2}}{\sigma_{2}^{2}+\lambda} & \cdots & 0 \\
\cdots & \cdots & \cdots & \\
0 & 0 & \cdots & \frac{\sigma_{n}^{2}}{\sigma_{n}^{2}+\lambda}
\end{array}\right]\right)=\frac{\sigma_{1}^{2}}{\sigma_{1}^{2}+\lambda}+\cdots+\frac{\sigma_{n}^{2}}{\sigma_{n}^{2}+\lambda} \\
& \text { Examination Requirements: NIL }
\end{aligned}
$$

Projection.
$A \vec{x}=\vec{b} \quad$ Question What is the nearest point of \vec{b}
$A \vec{x} \in \operatorname{Ol}(A)$ in $\mathrm{H}(A)$
anjwer. projection Matrix

$$
P=A\left(A^{\top} A\right)^{-1} A^{\top}
$$

behind

$$
\begin{aligned}
& \frac{A \vec{x}}{\|}=\vec{b} \quad \Rightarrow \quad A^{\top} A \vec{x}=A^{\top} \vec{b} \Rightarrow \vec{x}=\left(A^{\top} A\right)^{-1} A^{\top} \vec{b} \cdot \\
& A \cdot \vec{x}=\underbrace{A\left(A^{\top} A\right)^{-1} A^{\top}}_{\text {prost spuare. }} \vec{b}
\end{aligned}
$$

- Hints (Exercire 2-4)
(1) $\|\underline{u}\|=1 . \quad P=u\left(\underline{u}_{u^{\top}} u\right)^{-1} u^{\top}=\underline{u u^{\top}} \quad$ rank| matrix \quad projection
(2) P is a Projection Matrix. $\quad P^{2}=P \quad P=P^{\top}$

$$
\begin{array}{ll}
P^{2}=A\left(A^{\top} A\right)^{-1} A^{\top} A\left(A^{\top} A\right)^{-1} A^{\top}=A\left(A^{\top} A\right)^{-1} A^{\top}=P \\
P=A\left(A^{\top} A\right)^{-1} A^{\top} & \\
\operatorname{Nal}^{\top}(P)
\end{array}
$$

$$
\frac{P \cdot\left(P_{x}\right)}{\frac{P \text { pigection }}{2, T_{\text {wl }}}}=\underset{\text { Prijection }}{\text { 1 tial }}
$$

$-x \in \cos ^{\prime \prime}(P) \quad P_{x}=x$. x is eigenvertor with eisenvale 1
$-x \in \operatorname{Na} \mid(P) \quad P_{x}=0 \quad \operatorname{Nal}(P) \perp \operatorname{Row}(P)$
(2) $P^{2}=P \quad$ means $\quad P \cdot\left(P_{x}\right)=P x$
now (P)
A. .

$$
\begin{gathered}
\text { left } \\
\text { Nu } \\
\\
\text { (}
\end{gathered}(P)
$$

x is eigencector nith eigenvalue 0
(4) P only have eigenvabe 1 or 0

$$
P^{2}=P \Rightarrow P^{2}-P=0 \Rightarrow \lambda^{2}-\lambda=0 \Rightarrow \lambda=1.0
$$

Δ If λ is the eisenuale of P. Then $\lambda^{2}-\lambda$ is the eigen $P^{2}-P$

$$
P_{x}=\lambda x \quad \Rightarrow\left(P^{2}-P\right) x=P^{2} x-P x=\left(\lambda^{2} x-\lambda x\right)=\left(\lambda^{2}-\lambda\right) x
$$

(b) $I=u_{1} u_{1}^{\top}+u_{2} u_{2}^{\top}+\cdots+u_{r} u_{r}^{\top}+u_{r+1} u_{r+1}^{\top}+\cdots+u_{n} u_{n}^{\top}$
$u_{1} \ldots U_{n}$ are I's eigenvector $u^{\prime}+h$ eigenvalue 1

$$
I-P=\underbrace{0 \cdot u_{1} u_{1}^{\top}+0 \cdot u_{2} u_{2}^{\top}+\cdots+o u_{r} u_{r}^{\top}}_{u_{1}, u_{2}, \cdots u_{n} \text { is }}+\underbrace{u_{r+1} u_{n+1}^{\top}+\cdots+u_{n} u_{n}^{\top} \text { is +le }}_{u_{r+1}}
$$

the orthonormal basis ortlovoral basis of of Nu$)(I-P) /$ left Nu$)(I-P)$ $G(I-P) / D_{0 w}(I-P)$

Gram-Schmidt Process.
$-\left\{x_{1} \cdots x_{n}\right\}$ basis $\rightarrow\left\{u_{1} \cdots u_{n}\right\}$ orthogonal,
Hint. Orthogonal matrix \rightarrow Column is orthononorma.) If you wan orthogronl. you led to normalize your vector to unit vector!

- QR Decomposition. $R=Q^{\top} A$

$$
A=Q R, \quad A^{\top} A=\frac{R^{\top} \frac{Q^{\top} Q R}{I}=R^{\top} R \text { lower upper }}{R}
$$

But if's not LU Decomposition!
LU Mead dig -f L to be 1 .

Diagonalization \& Eigen Vectors,

$$
A=x \wedge x^{-1} \quad A \in \mathbb{R}^{\operatorname{sn}}
$$

- $x=\left[\begin{array}{lll}x_{1} & \cdots & x_{n}\end{array}\right] \quad x_{1} \cdots x_{n}$ are linear independent Eigen vector

This is not always true

- In the case. $\lambda_{1}, \lambda_{2}, \cdots \lambda_{n}$ ave all different numbers this is true.
(Excise 6)
- Example. $A=\left[\begin{array}{ll}1 & 1 \\ & 1\end{array}\right] \quad P(\lambda)=(\lambda-1)^{2}$ $\lambda_{1}=1 \stackrel{\rightharpoonup}{\lambda}_{2}=1$
$\Rightarrow A-I=\left[\begin{array}{ll}0 & 1 \\ 0 & 0\end{array}\right] \rightarrow 1$ dimension fifer spears
- $A^{k}=x \Lambda^{k} x^{-1} \quad$ Excise 1
- $A=\mathbb{X} B \bar{X}^{-1} \quad$ similar matrix
same eijenvale. \rightarrow different eigenvectors.
Sane trace
same deft.

$$
\begin{aligned}
& \quad A x=\lambda x \\
& \quad X B X^{-1} x=\lambda x \\
& \Rightarrow B \mathbb{I}^{-1} x=\lambda \mathbb{X}^{-1} x \\
& \Rightarrow \mathbb{X}^{-1} x \text { is the eigen } \\
& \text { hint us the way } \\
& \text { to compute the } \\
& \text { matrix } \bar{X} \text {. (If he know } \\
& \text { A and } B \text {) }
\end{aligned}
$$

Symmetric Matrix

- Egenuake is real, can always be diagondized Egenvectors is orthogond to each otter.
$-A=\frac{Q}{\uparrow} \Lambda \underline{Q}^{\top} \quad \Rightarrow$ Ais similar to Λ
Q is an orthogonl matrix eiencucte eigenvoctor.

$$
-A=\hat{\lambda}_{1} u_{1} u_{1}^{\top}+\lambda_{2} \cdot u_{2} u_{2}^{\top}+\cdots+\lambda_{n} u_{n} u_{n}^{\top}
$$

cymetric
projection Martrix
SUD Any Mafroix $\quad A \in \mathbb{R}^{m \times n}$
symunefic $A A^{\top}=U \Sigma \Sigma^{\top} U^{\top}, U$: ejennecton of $A A^{\top}$
symatic $A^{\top} A=V \Sigma^{\top} \Sigma V^{\top}, V$: eigencector of $A^{\top} A$
$-A=\sigma_{1} u_{1} v_{1}^{\top}+\sigma_{l} u_{2} v_{2}^{\top}+\cdots+\sigma_{r} u_{r} v_{r}^{\top}$
$\Rightarrow U . V$ can provide orthrormil basis of the Four tunderventel subspace of A.

- How to compirte SUO
- Use, U : ejenrecton of $A A^{\top}$ op V ieigencector of $A^{\top} A$
- use

$$
u_{1}=\frac{1}{\sigma_{1}} A v_{1} \text { or } v_{1}=\frac{1}{\sigma_{1}} A^{\top} u_{1}
$$

- Properties of Det
- Cofactor.
- Check if a Transform is linear Transfiru Δ it is lisear Transform
$c=0 \quad \Rightarrow$ pase by dectiy
$T(0)=0 \quad \leftarrow \quad-T(c u)=c T(u)$

$$
-T\left(v_{1}+v_{2}\right)=T\left(v_{1}\right)+T\left(v_{2}\right)
$$

- It's not a lirear Truto

$$
P_{x}=\lambda x
$$ give a counterexarpa.

$$
P \underline{P_{x}}=P(\underline{A})=(A) P_{x}=\underline{\lambda} \underline{\lambda_{x}}=\underline{x}^{2}+
$$

Ortlogonal Matrix $Q \in \not R^{n \times n}$ squave matrix

$$
Q^{\top} Q=\frac{I}{\text { both means } Q^{\top}=Q^{-1}} \Leftrightarrow Q Q^{\top}=I
$$

Orthogonal Metrix $Q \in \mathbb{R}^{n \times m}$
means Q : arflormel basu
$Q Q^{\top} \quad n \times n$ methir
4

$$
\text { eigen } \underbrace{1 \cdots 1}_{n} \underbrace{0 \cdots 0}_{m-n}
$$

means QQTis projection!
$\underline{A} x=b \quad \Rightarrow \quad A^{\top} A x=A^{\top} b \quad \Rightarrow x=\left(A^{\top} A\right) A^{\top} b \quad$ least square
square Solution matrix

$$
\begin{aligned}
A x= & \frac{A\left(A^{\top} A\right)^{-1} A^{\top} b}{\text { projection }} \text { inctix } \\
& P=A\left(A^{\top} A\right)^{-1} A^{\top}
\end{aligned}
$$

- P_{x} is the nearest point to b in $G \mid(A)$ this means. $x-P_{x} \perp \operatorname{col}(A)$

Exercion 2 - Excialy
$x-P_{x} \perp \cos (P) \Rightarrow x-P_{x}=\operatorname{let+Nul}(P)$ $\operatorname{Col}(I-P)=(e f+N u l(P)$
$A=\left[v_{1}, v_{2}\right], \vec{u}$ is orthogonal to \vec{u}, \vec{v}_{2}

$$
\begin{aligned}
& \vec{u}^{\top} \vec{v}_{v}=0 \\
& \vec{u}^{\top} \vec{v}_{2}=0
\end{aligned}
$$

$$
\Rightarrow u^{\top} \underbrace{\left[v_{1}, v_{1}\right]}_{A}=\left[\vec{u}^{\top} \vec{v}_{1}, \vec{u}^{\top} \vec{v}_{1}\right]=[0,0]
$$

$\Rightarrow A^{\top} u=0 \quad u \in \operatorname{left} \operatorname{NuI}(A)$
(1) $\|u\|=1$. Projection Matrix to u

$$
P=u \frac{\left(u^{\top} u\right)^{-1}}{\|u\|=1} u^{\top}=u u^{\top}
$$

rank I Symmetric Matrix
(2) P is also symmetric. $P^{\top}=\left(A\left(A^{\top} A\right)^{-1} A^{\top}\right)^{\top}=\left(A^{\top}\right)^{\top}\left(A^{\top} A\right)^{-\top} A^{\top}$

$$
=A\left(A^{\top} A\right)^{-\top} A^{\top}=A\left(A^{\top} A\right)^{\top} A^{\top}
$$

(G) $\boldsymbol{P}^{2}=\boldsymbol{P} \quad$ Project (y) to P, the answer is y

$$
P(P x)=P_{x}^{2}=P_{x}
$$

proof. $P^{2}=A\left(A^{\top} A\right)^{-1} \frac{A^{\top} A\left(A^{\top} A\right)^{-1} A^{\top}}{\Sigma}=A\left(A^{\top} A\right)^{-1} A^{\top}=P$
4 (4) has eigenvalue 1 and $0 . \lambda$ is p's eigenvalue

$$
P_{x}=\lambda x=P^{2} x=\lambda^{2} x \quad \Rightarrow \lambda^{2}=\lambda \Rightarrow \lambda=0
$$

(5) Fat

$$
\operatorname{rank}(P)=r
$$

$x \in \operatorname{Hi}(P) \quad P_{x}=x$ eigenvalue $1 \quad \vec{u}_{1} \cdots \vec{u}_{r}$ (orthonormal)
$x \in \operatorname{Nul}(P) \quad P_{x}=0$ eifenushere $0 \quad \vec{u}_{A+1} \cdots \vec{u}_{n}$ (onthonormcl)

$$
\Rightarrow P=1 \vec{u}_{1} \vec{u}_{1}^{\top}+1 \vec{u}_{2} \vec{u}_{2}^{\top}+\cdots+1 \cdot \vec{u}_{r} \vec{u}_{r}^{\top}+0 \cdot \vec{u}_{n_{1}} \vec{u}_{r+1}^{\top}+\cdots+0 \vec{u}_{n} \vec{u}_{n}^{\top}
$$

$I-P$
$x \in \operatorname{col}(P) \quad(I-P)_{x}=x-P_{x}=0 \quad$ eipenvalue $0 \quad \vec{u}_{1} \cdots \vec{u}_{r}$
$x \in \operatorname{NuI}(P) \quad(I-P) x=x-P_{x}=x$ eijenncte $1 \quad \vec{u}_{r+1} \cdots \vec{u}_{n}$

$$
\begin{aligned}
& I-P=0 \cdot \vec{u}_{1} \vec{u}_{1}^{\top}+0 \cdot \vec{u}_{2} \vec{u}_{1}^{\top}+\cdots+0 \cdot \vec{u}_{r} \vec{u}_{r}^{\top}+1 \cdot \vec{u}_{r+1} \vec{u}_{r+1}^{\top}+\cdots+1 \vec{u}_{n} \vec{u}_{s}^{\top} \\
& I=P+(I-P) \\
& =\vec{u}_{1} \vec{u}_{1}^{\top}+\vec{u}_{2} \vec{u}_{2}^{\top}+\cdots+\vec{u}_{r} \vec{u}_{r}^{\top}+\vec{u}_{r+1} \vec{u}_{r+1}+\cdots+\vec{u}_{n} \vec{u}_{n}^{\top}
\end{aligned}
$$

$\overline{\mathrm{Col}} \quad P$ is a Projetion $\Rightarrow I-P$ is abs Rojection

$$
\begin{array}{ll}
\operatorname{Col}(P)=N u l(I-P) \Rightarrow & \vec{u}_{1} \cdots \vec{u}_{r} \\
N_{u l}(P)=G \mid(I-P) \Rightarrow & \vec{u}_{r+1} \cdots \vec{u}_{n}
\end{array}
$$

Egenuector

- λ is the solution of $P(\lambda)=\operatorname{det}(\lambda I-A)$

$$
x \in N u l(A-\lambda I)
$$

- Diagonalization. $\quad A=X \widehat{X} \vec{x}^{-1} \quad$ linear independ

$$
\bar{X}=\left[\vec{x}_{1}, \vec{x}_{1}, \cdots \vec{x}_{4}\right] \quad \vec{x}_{1}, \vec{x}_{2} \cdots \vec{x}_{4} \text { eigenvectors. }
$$

This will not allway exist!
(1) $\lambda_{1}, \lambda_{1}, \cdots \lambda_{n}$ are differment eijen $\Rightarrow \vec{x}_{1}, \vec{x}_{1}, \ldots \vec{x}_{e}$ livan indperl
$\Rightarrow A$ can be dias
(2) Example. $A=\left[\begin{array}{ll}1 & 1 \\ & 1\end{array}\right] \quad P(\lambda)=(\lambda-1)^{2} \rightarrow \lambda_{1}=\lambda_{2}=1$
$\Rightarrow \operatorname{Nul}(A-I)=\operatorname{Nul}\left(\left[\begin{array}{ll}0 & 1 \\ 0\end{array}\right]\right)$ is only Idimension space A can't bo digoulised.
$A=\underline{Z} B \mathbb{X}^{-1} \quad$ similar.

- Saire frace
- Sane defermincte
x is A's eipenvertor $\Rightarrow X X$ is $B^{\prime} s$ eijen vector $\mathbb{X} B \mathbb{D}^{-1} x=\lambda x$

$$
\Rightarrow B X^{-1} x=\lambda X^{-1} x
$$

- same eigencalues. x eigenvector

$$
A=x \wedge x^{-1} \Rightarrow A^{k}=x \wedge^{k} x^{-1} \text { Exercie }
$$

Symmetric
$A=Q \wedge \underline{Q}^{\top} \quad Q \quad$ orftogonal

- Symmetric is diagonalizable, eigenvalues is real. the eigenvector of A are orflojowl to each other.

$$
Q=\left[\begin{array}{lll}
u_{1} & \cdots & u_{n}
\end{array}\right]
$$

$U_{1} \cdots U_{n}$ are ejen vector

$$
\left\|u_{1}\right\|=\cdots u_{n} \|=1 \text { (orthonormal) }
$$

$$
\begin{aligned}
-\quad A= & \lambda_{1} u_{1} u_{1}^{\top}+\lambda_{2} u_{2} u_{2}^{\top}+\cdots+\lambda_{n} u_{n} u_{n}^{\top} \\
& \text { rank I symutric } \\
& \text { projection matrix } \\
& \text { project to } u_{1}
\end{aligned}
$$

SVD All Mctrix $\mathbb{R}^{m \times n}$

$$
\begin{aligned}
& A=U \sum_{m \times n}^{m \vee n} V^{T^{n \times n}} \\
& \text { U.V. squase ortlogonel Meterx } \\
& \Sigma \text { diag } \\
& \text { symmetry } \\
& \text { - } A^{\top} A=V \Sigma^{\top} \Sigma V^{\top} \quad V_{i}\left[\begin{array}{lll}
\vec{U}_{1} & \cdots & \vec{U}_{n}
\end{array}\right] \quad \vec{v}_{1} \ldots \vec{U}_{s} \text { eigenvector of } A^{\top} A \\
& \stackrel{s A^{m p t i c}}{A A^{\top}}=u \Sigma \Sigma^{\top} U T \quad U:\left[\vec{a}_{1}, \cdots \overrightarrow{u_{n}}\right] \quad \vec{u}_{1} \cdots \vec{u}_{b} \ldots . . \quad \text { of } A A^{T} \text {, }
\end{aligned}
$$

Q : orthogonal matrix
$Q \in \mathbb{R}^{\text {nan }}$ square matrix

$$
Q^{\top} Q=Q Q^{\top}=I
$$

$$
Q=\left[\vec{u}_{1}, \vec{u}_{2}, \ldots, \vec{u}_{n}\right] \quad \vec{u}_{1}, \ldots \vec{u}_{n} \text { are orflonormal }
$$

Find Orthogonal Basis $\& G-S$
It's not orthonormal
L nionadite to unit lector

$$
A=\frac{Q}{\pi} R_{R} \quad \Rightarrow \quad R=Q^{\top} A
$$

orthogonal upper tranijaler
Remark. $\quad A^{\top} A=(Q R)^{\top} Q R=R^{\top} \frac{Q^{\top} Q R=R^{T} Q}{I} R$
However it's oof $c u$. let $L E$ dig, to bel. heeds

