NO PHOTOCOPY This paper contains pages

Page _____

NEWYORK UNIVERSITY Linear Algebra Final Review

Subject: MATH-UA 140 Linear Algebra Name of Examiners: .____

Year: 2024(Sem 2)Time allow: 1001

Instruction to Candidate : (only on page 1)

- This paper contains _____ questions. (1)
- Candidates must answer _____ questions. (2)

Question No <u>1</u>

Diagonalize A and compute $V\mathbf{A}kV^{-1}$ to prove this formula for A^k :

$$A = \begin{pmatrix} 2 & -1 \\ -1 & 2 \end{pmatrix} \text{ has } A^k = \frac{1}{2} \begin{pmatrix} 1+3^k & 1-3^k \\ 1-3^k & 1+3^k \end{pmatrix}.$$

and what is the meaning of $\lim_{k\to\infty} \frac{1}{3^k} A^k = \left(\frac{A}{3} \right)^k$.

Solution: The eigenvalues of A are 3 and 1, and the corresponding eigenvalues are $v_1 = (-1, 1)$, $v_{2} = (1,1). \text{ Therefore, } A \text{ can be diagonalized as } A = V V^{-1}, \text{ where } V = [v_{1},v_{2}],$ $\Lambda = \begin{pmatrix} 3 & 0 \\ 0 & 1 \end{pmatrix} \text{ and } V^{-1} = \begin{pmatrix} -1/2 & 1/2 \\ 1/2 & 1/2 \end{pmatrix}. A^{k} = V \Lambda^{k} V^{-1} = \frac{1}{2} \begin{pmatrix} 1+3^{k} & 1-3^{k} \\ 1-3^{k} & 1+3^{k} \end{pmatrix}.$ $\lim_{k \to \infty} \frac{1}{3^k} A^k = \lim_{k \to \infty} \frac{1}{2} \begin{pmatrix} \frac{1}{3^k} + 1 & \frac{1}{3^k} - 1 \\ \frac{1}{3^k} - 1 & \frac{1}{3^k} + 1 \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \\ -\frac{1}{2} \end{pmatrix}$ $\left(\frac{1}{2}\right)$ (the largest eigen vector) -1/24 -> eisenvector of largest eisenvalue Examination Requirements: NIL V.t.

NO PHOTOCOPY This paper contains pages

Page _____

NEWYORK UNIVERSITY Linear Algebra Final Review

Subject: MATH-UA 140 Linear Algebra Name of Examiners: ._____ $\begin{array}{c} \text{Year:} \quad \underline{2024(\text{Sem 2})} \\ \text{Time allow:} \quad \underline{1001} \end{array}$

<u>Instruction to Candidate</u> : (only on page 1)

- (1) This paper contains _____ questions.
- (2) Candidates must answer _____ questions.

Question No $_3$

What are the four fundamental subspaces of M = I - P in terms of the column space of P.

Solution

For a projection matrix P: (projection matrix is always symmetric)

- $x \in \operatorname{col}(P) = \operatorname{row}(P)$: Px=x
- $x \in Nul(P) = LeftNul(P)$: Px=0

For matrix I - P

- $x \in col(P) = row(P)$: (I-P)x=x-Px=x-x=0
- $x \in Nul(P) = LeftNul(P)$: (I-P)x=x-Px=x-0=x

is a also a projection matrix.

Left Null space = Right Null space = Colume space of P. Column space = Row space = orthogonal complement of the colume space of P.

NO PHOTOCOPY This paper contains pages

Page _____

NEWYORK UNIVERSITY Linear Algebra Final Review

Subject: MATH-UA 140 Linear Algebra Name of Examiners: ._____ $\begin{array}{c} \text{Year:} \quad \underline{2024(\text{Sem 2})} \\ \text{Time allow:} \quad \underline{1001} \end{array}$

<u>Instruction to Candidate</u> : (only on page 1)

- (1) This paper contains _____ questions.
- (2) Candidates must answer _____ questions.

Question No <u>4</u>

P is a Projection Matrix, prove *P* is symmetric and $P^2 = P$. What is the eigenvalue of Projection matrix *P*. Prove that I - 2P is an orthogonal matrix

Solution

 $P = A(A^T A)^{-1} A^T$ then

• $P^2 = A \underbrace{(A^T A)^{-1} A^T A}_{=I} (A^T A)^{-1} A^T = A (A^T A)^{-1} A^T = P$

•
$$P^T = (A(A^T A)^{-1} A^T)^T = A^T (A^T A)^{-T} A = A(A^T A)^{-1} A^T$$
 (For $A^T A$ symmetric)

Eigenvalue is 1,0 (for $P^2 = P$ so eigenvalues should satisfies $\lambda^2 = \lambda$) Since P is a projection matrix, we have $P = P^T$. To show that Q is an orthogonal matrix, we need to check that $QQ^T = I$. We have

$$QQ^{T} = (I - 2P)(I - 2P)^{T}$$
$$\cdot$$
$$= (I - 2P)(I^{T} - 2P^{T})$$

= (I - 2P)(I - 2P) (since I and P are symmetric)

 $= I - 4P + 4P^2$

Since for a projection matrix we have $P^2 = P$, this product is equal to $QQ^T = I$, as required.

NO PHOTOCOPY This paper contains pages

Page _____

NEWYORK UNIVERSITY Linear Algebra Final Review

Subject: MATH-UA 140 Linear Algebra Name of Examiners: ._____

 $\begin{array}{c} \mbox{Year:} \ \underline{2024(Sem \ 2)} \\ \mbox{Time allow:} \ \underline{1001} \end{array}$

<u>Instruction to Candidate</u> : (only on page 1)

- (1) This paper contains _____ questions.
- (2) Candidates must answer _____ questions.

Question No $_5$

If $A^2 = -A$, what is the possible value of det(A).

Solution

 $A^2 = -A$ means $\det(A^2) = \det(-A)$ however

•
$$det(A^2) = det(A)^2$$
 $det(AB) = det(A) det(B)$ $det(C \cdot A) = C^n A$
• $det(-A) = (-1)^n det(A) = \begin{cases} -det(A) & \text{if } n \text{ is odd} \\ det(A) & \text{if } n \text{ is even} \end{cases}$ $A \in \mathbb{R}^{mn}$

Thus

$$\det(A)^{2} = \begin{cases} -\det(A) & \text{if } n \text{ is odd} \\ \det(A) & \text{if } n \text{ is even} \end{cases}$$

which means

$$\det(A) = \begin{cases} 0, -1 & \text{if } n \text{ is odd} \\ 0, 1 & \text{if } n \text{ is even} \end{cases}$$

NO PHOTOCOPY This paper contains pages

Page _____

NEWYORK UNIVERSITY Linear Algebra Final Review

Subject: MATH-UA 140 Linear Algebra Name of Examiners: ._____ $\begin{array}{c} \text{Year:} \quad \underline{2024(\text{Sem 2})} \\ \text{Time allow:} \quad \underline{1001} \end{array}$

<u>Instruction to Candidate</u> : (only on page 1)

- (1) This paper contains _____ questions.
- (2) Candidates must answer _____ questions.

Question No $_5$

Suppose an $m \times n$ matrix A has rank r. What are the ranks of

- (a) A^T ?
- (b) AA^T ?
- (c) $AA^T + \lambda I \ (\lambda > 0)?$
- (d) $A^T A A^T$?

Solution

Answer 1

(A) r

- (B) we showed in class it's r (page 17 in https://2prime.github.io/files/linear/ linearslide14filled.pdf)
- (C) it's a positive definite matrix with all eigenvalues larger than λ , think why.

(D) r (similar page 17 in https://2prime.github.io/files/linear/ linearslide14filled.pdf)

Answer 2 Using SVD

- (A) $\operatorname{rank}(A^T) = \operatorname{dim}(\operatorname{row}(A^T)) = \operatorname{dim}(\operatorname{col}(A)) = \operatorname{rank}(A) = r.$
- (B) Let $A = U\Sigma V^T$ be a full SVD. Then,

$$AA^T = (U\Sigma V^T)(U\Sigma V^T)^T = U\Sigma V^T V\Sigma^T U^T = U\Sigma^2 U^T.$$

Thus, $U\Sigma^2 U^T$ is a SVD of AA^T . If Σ has r positive singular values then so will Σ^2 . Therefore, the rank of AA^T is r.

- (C) Since $I_m = UU^T$, the equation above yields $AA^T + \lambda I = U\Sigma^2 U^T + \lambda I = U(\Sigma^2 + \lambda I_m)U^T$. Since $\Sigma^2 + \lambda I = \text{diag}(\sigma_1^2 + \lambda, \dots, \sigma_r^2 + \lambda, \dots, \lambda)$, the rank is m.
- (D) $A^T A A^T = (U \Sigma V^T)^T (U \Sigma V^T) (U \Sigma V^T)^T = V \Sigma^T U^T U \Sigma V^T U^T U \Sigma V^T = V \Sigma^T \Sigma \Sigma^T V^T = V \Sigma^3 V^T$. Σ^3 has r positive singular values as like Σ . Therefore, the rank is r.

Projection .

 $\vec{a} = \vec{x} \vec{A}$ Quertion What is the nearest point of 5 in GILA) AREGIAI anjuer projection Natrix $P = A(A^T A)^{-1} A^T$ $A\vec{x} = \vec{b} \Rightarrow A^T A \vec{x} = A^T \vec{b} \Rightarrow \vec{x} = (A^T A)^T A^T \vec{b}$ behind least spugte $A = \underline{A} (\underline{A}^{T} \underline{A})^{-1} \underline{A}^{T} \overline{b}^{T}$ projection matrix - Hints (Exercise 2-4) Hints (treffine 1 - 14) 1 ||u||=1 $P = u(u^T u)^T u^T = uu^T$ ||u||=1 $u^T u = ||u||^2 = 1$ 1 ||u||=1 $P = u(u^T u)^T u^T = uu^T$ ||u||=1 $u^T u = ||u||^2 = 1$ $u^T u = 1$ Q P is a Projection Matrix. $P^2 = P \quad P = P^T$ $P^{2} = A (A^{T} A)^{-1} A^{T} A (A^{T} A)^{-1} A^{T} = A (A^{T} A)^{-1} A^{T} = P$ P= A(ATA) AT Nul (P) > GI(P) $P. (\mathbf{P}_{\mathbf{X}}) = \mathbf{P}_{\mathbf{X}}$ (Q P' = P) means now (P) 2 Tines 1 time . (P) - x ∈ GI(P) Px = x. x is eigenvertor with eigenvalue 1 Px = 0 x is eigenvector with eigenvolve 0 - XE Nul(P) 6Af Mul (P) P only have eigenvalue (or O $P^* = P \Rightarrow P^2 - P = O \Rightarrow \lambda^2 - \lambda = 0 \Rightarrow \lambda = 1, O$ If λ is the eigenvalue of P. Then $\lambda^2 - \lambda$ is the eigen P = P $Px = \lambda x \Rightarrow (P^2 - P)x = P^2x - Px = (\lambda^2 x - \lambda x) = (\lambda^2 - \lambda)x$ P= U, U, + U2 U2 + --- + Ur Ur + O. Urti Urti + ... + O Un Un (7) us --- un is the orthonormal limit --- lun is the (9) basis of now (P)/GI(P) orthonor basis of NU(D)/left.Nul

Diagonalization & Eigen Vectors,

$$A = X \land X^{-1}$$
 $A \in \mathbb{R}^{h \land h}$
 $X = [X_1 \cdots X_n]$ $X_1 \cdots X_n$ are linear independent Eigen vectors
This is not always true.
 $- I_n$ the case. $\lambda_1 \cdot \lambda_2 \cdots \cdot \lambda_n$ are all different
numbers. this is true.
 $(Extine f)$
 $- Example$ $A = [1 \ 1] P(\lambda) = (\lambda - 1)^2$
 $\lambda_1 = 1 \ \lambda_2 = 1$
 $\Rightarrow A - I = [0 \ 0] \Rightarrow 1$ dimension eigen space.

 $-A^{k} = X \Lambda^{k} X^{-1} \quad \text{Exclusion}$

-
$$A = X B X^{-1}$$
 Similar matrix
Same cigenvale. \Rightarrow different eigenvectors.
Same trace
Same det .
 $X = \lambda \times$
 $X = \lambda \times$
 $X = \lambda \times$
 $\Rightarrow B X^{-1} \times = \lambda X^{-1}$
 $\Rightarrow B X^{-1} \times = \lambda X^{-1}$
 $\Rightarrow X^{-1} \times = \lambda X^{-1}$

A and B)

Symmetric Matrix

- Epenvalue is real, can always the diagraphized Egenvectors is orthogond to each other. $-A = Q \wedge Q^{T}$ > A's similar to A Q is an orthogon matrix eigenvalue eigenvactors. - A= A, unit + AL. Usur + ... + An Un Un rankl Cymrethe Phojection Matrix. SVD Any Matrix $A \in \mathbb{R}^{m \times n}$ $- A = U \Sigma \sqrt{T}$ u d vorth diag orth symmetric AAT = U II U, U : eigenvectors of AAT SympticATA = VITIVT, V : eigenvector of ATA - A= JI UIVIT + JI UIVIT + ··· + JF UrVF ⇒ U. V can provide orthonorm.) basis of the Four fundamental subspace of A.

- How to compute SUD

- Use, U: eigenrector of AAT OF V: eigenrector of ATA
- use $u_1 = \frac{1}{\sigma_1} A v_1$ or $v_1 = \frac{1}{\sigma_1} A^T u_1$

- Cofactor. - Check if a Transform is linear Transform a it is linear Transform $c_{\pm 0}$ $T_{(0)\pm 0}$ e = -T(cv) = c T(v) $-T(v_{1}+w) = T(w) + T(v_{2})$ c = h s = h s $P_{x} = \lambda x$ $P_{x} = P(hv) = c P_{x} = \lambda \Delta x = x^{+}x$ Orthogonal Matrix QE (R^{hxh)} Square matrix QTQ = I (=) QQT = I both means QT = QT Orthogonal Metrix QE (R^{hxh)} means Q: arthornal basis QTQ mxm matrix = I eigen 1....1 M QQT hxn matrix eigen 1....1 M Neans QQT is prijection!

$$A_{X} = b \implies A^{T}A_{X} = A^{T}b \implies X = (A^{T}A) A^{T}b \quad \text{kert Spoch}$$

$$Solution$$

$$A_{X} = b \implies A^{T}A_{X} = A^{T}b \implies X = (A^{T}A)^{T}A^{T}b \quad \text{solution}$$

$$A_{X} = A (A^{T}A)^{T}A^{T}b \quad \text{solution}$$

$$P = A (A^{T}A)^{T}A^{T}b \quad P = A (A^{T}A)^{T}A^{T}$$

$$P = A (A^{T}A)^{T}A^{T}$$

$$P = A (A^{T}A)^{T}A^{T}$$

$$P = A (A^{T}A)^{T}A^{T}$$

$$P = A (A^{T}A)^{T}A^{T}$$

$$A_{X} = P_{X} \perp Col(A) \quad \text{Evential } 2 - \text{Evolution}$$

$$A = [V, V_{X}] \quad \vec{u} \text{ is orthogonal to } \vec{u}, \vec{v} \quad \vec{u} \quad \vec{v} = 0$$

$$\vec{u} \quad \vec{v} = 0$$

$$A^{T} u = 0 \quad u \in [eft Mui(A)$$

$$A = [V, V_{X}] = [\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = [\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = [\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = [\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = (\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = (\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = (\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = (\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = (\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = (\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = (\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = (\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = (\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = (\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = (\vec{u}^{T}\vec{v}, \vec{u}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = (\vec{u}^{T}\vec{v}, \vec{v}^{T}\vec{v}_{1}] = [0, 0]$$

$$A = [V, V_{X}] = [V, V_{X}] = [0, 0]$$

$$A = [V, V_{X}] = [V, V_{X}] = [V, V_{X}] = [V, V_{X}]$$

$$A = [V, V_{X}] = [V, V_{X}] = [V, V_{X}] = [V, V_{X}]$$

$$A = [V, V_{X}] = [V, V_{X}] = [V, V_{X}] = [V, V_{X}]$$

$$A = [V, V_{X}] = [V, V_{X}] = [V, V_{X}] = [V, V_{X}]$$

$$A = [V, V_{X}] =$$

5 Fact			rank (P)=r	
× 641(P)	Px =x	eigenvalue l	UI Ur	(orthenormal)	
X E Nul (P)	$P_X = 0$	eifenvalue O	WAY Un	(orthonormal)	
> P= 1 6 6	$1 + 1 $ $\vec{u}_1 $ $\vec{u}_1 - $	+ + 1. Ur ui	T+ O. Une Une	+ + 0 Un Un	
I-P					
(4)103 ×	$(I - P) \times = x$	- Ax = o eine	envalue o ü	··· Ur	
X EMul (P)	$(I - P) \times =)$	$c - \beta x = x - \theta \beta$	penuela l'Uril	- Un	
$I = P = 0. \ \vec{u}_1 \ \vec{u}_1 + 0. \ \vec{u}_1 \ \vec{u}_1 + \cdots + 0. \ \vec{u}_r \ \vec{u}_r^T + 1. \ \vec{u}_{rel} \ \vec{u}_{rel} + \cdots + 1 \ \vec{u}_n \ \vec{u}_n^T$					
I= P+(I-P)				
$=$ $\vec{u}_i \vec{u}_i^T$	+ un un 11 +	+ ū r ù	$r + \tilde{u}_{R_1} u_{R_2}$	+ + Un Ub	
<u>Col</u> P is	a Projection	⇒ I- P %	als Ajectiz	> n	
$Col(P) = Nul(I-P) \Rightarrow Ui - Ur$					
Nul (P) = G1	(I-P)))	Ure Un			

Eigenvertor

$$A = A$$
 ×
 $A \in (\mathbb{R}^{n\times n} \quad A \in \mathbb{R}. \quad Eigenvalue.$
- λ is the solution of $P(\lambda) = olet (\lambda I - A)$
 $x \in N(a) (A - \lambda I)$
- Diagonalization. $A = X (A) \times^{-1}$ linear independ
 $\overline{X} - [X_1, \overline{X_1}, \dots, \overline{X_n}] \quad X_1, \overline{X_1} - \dots \overline{X_n} \quad eigen voctors$
This will not alway exist?
(a) $A_1 : A_1 - \dots A_n$ are different eigen $\Rightarrow \overline{X_1} : \overline{X_1} , \dots \overline{X_n}$ livear independ
 $\Rightarrow A = an be diag$
(c) $\overline{L} = M_{an} (A - \overline{I}) = M_{an} ([C \circ A])$ is only follower sion space
 $A = X B \overline{X}^{-1}$ Similar
- Same trace
- Same determinete
- Same det

 $A = X \wedge X^{-1} \Rightarrow A^{t} = X \wedge X^{t} X^{t}$ Frencise

Symmetric a^{-1} $A = Q \land Q^{-1}$ Q orthogonal Symmetric - Symmetric is diggardizable, eigenvalues is real, the eigenvactors of A are orthogon to each other. Q= Tui -- un] Ui -- Un are eigen vector 1/ u11= - 1 Un11=1 (orthonormal)

$A = \lambda_1 u_1 u_1^T + \lambda_2 u_2 u_2^T + \cdots + \lambda_n u_n u_n^T$

Dank 1 Aynnatric Phojection matrix Phoject to Ur

SVD All Metrix	R ^{mrn}
$n \sim n$ $n < n > n > n > n > n$	U.V. square orflogonal marth
A= U I V mxn Symmetri	2 dias
$- A^{T} A = V \Sigma^{T} \Sigma V^{T}$	V: [Vi ~~ Vn] Vi ~~ Vh eyenvector of ATA
AAT _ UIITUT	U: Tu, ··· Tun) UI ··· UN ····· of AA··

