Linear Algebra

Final Sample Question

Yiping Lu

January 2024

Exercise True or False? In both cases, explain clearly.

- $\operatorname{det}(A B)=\operatorname{det}(B A)$ Yes
- Q^{\prime} s column vectors are orthogonal, $Q Q^{\top}$ is a projection matrix. No
- For unit vector $\|u\|=1, Q=I-2 u u^{\top}$ is an orthogonal matrix (This is called Householder Matrix) Yes! first Q is symmetric because $u u^{\top}$ is symmetric. Then $Q Q^{\top}=Q Q=Q^{2}=\left(I-2 u u^{\top}\right)^{2}=I-2 u u^{\top}-$ $2 u u^{\top}+4 u \underbrace{u^{\top} u}_{u^{\top} u=\|u\|^{2}=1} u^{\top}=I-4 u u^{\top}+4 u u^{\top}=I$
- Q's column vectors are orthonomral, $Q Q^{\top}$ is a projection matrix. Yes
- $A^{1} 0$ is invertible then A^{3} is also invertible. Yes
- $\operatorname{rank}(A)=\operatorname{rank}\left(A^{\top} A\right)$ Yes
- Suppose you remove row 3 and column 4 of an invertible 5 by 5 matrix A. If that reduced matrix is not invertible, then the $(4,3)-$ entry of A^{-1} is 0 . Yes
- Suppose you remove row 3 and column 4 of an invertible 5 by 5 matrix A. If that reduced matrix is not invertible, then the $(3,4)-$ entry of A^{-1} is 0 . No
- If $I-A^{2}$ is invertible, then $I-A$ is invertible Yes, consider eigen value of A can't be $1,-1$.
- If A is a real $n \times n$ matrix then $\operatorname{det}\left(A^{2}\right) \geq 0$.

Yes

- If A is an $n \times n$ matrix with n distinct real eigenvalues, then A is diagonalizable.

Yes

- If A is a positive definite, then $A^{\top}+I$ is also positive definite matrix. Yes
- All positive definite matrices invertible Yes

Hard Questions

- For a 3×3 matrix A, if $\operatorname{det}(A)=3$, what is $\operatorname{det}(C)$ where C is the matrix of cofactor?
- What are the four fundamental subspaces of $M=I-P$ in terms of the column space of P
Left Null space $=$ Right Null space $=$ Colume space of P. Column space $=$ Row space $=$ orthogonal complement of the colume space of P.
This means that $P_{\operatorname{row}(A)}+P_{\operatorname{Nul}(A)}=I$, projection to the column space + projection to the null space is identity.
- If P is projection matrix, then
- Check $P^{\top}=P$
$-P^{2}=P($ means $\operatorname{det}(P)=1$ or 0$)$

$$
P^{2}=\underbrace{A\left(A^{\top} A\right)^{-1} A^{\top}}_{P} A\left(A^{\top} A\right)^{-1} A^{\top}=A \underbrace{\left(A^{\top} A\right)^{-1} A^{\top} A}_{I}\left(A^{\top} A\right)^{-1} A^{\top}=A\left(A^{\top} A\right)^{-1} A^{\top}=P
$$

$-I-2 P$ is an orthogonal matrix
Since P is a projection matrix, we have $P=P^{T}$. To show that Q is an orthogonal matrix, we need to check that $Q Q^{T}=I$. We have

$$
\begin{gathered}
Q Q^{T}=(I-2 P)(I-2 P)^{T} \\
=(I-2 P)\left(I^{T}-2 P^{T}\right) \\
=(I-2 P)(I-2 P) \quad(\text { since } I \text { and } P \text { are symmetric }) \\
=I-4 P+4 P^{2}
\end{gathered}
$$

Since for a projection matrix we have $P^{2}=P$, this product is equal to $Q Q^{T}=I$, as required.

- If P is full rank, then $P=I$.

If P is full rank means A in $P=A\left(A^{\top} A\right)^{-1} A^{\top}(A$ and P has the full column space). Then

$$
P=A\left(A^{\top} A\right)^{-1} A^{\top}=A A^{-1}\left(A^{\top}\right)^{-1} A^{\top}=I I=I
$$

- Suppose an $m \times n$ matrix A has rank r. What are the ranks of

1. A^{T} ?
2. $A A^{T}$?
3. $A A^{T}+\lambda I(\lambda>0)$?
4. $A^{T} A A^{T}$?

Solution

Answer 1
(A) r
(B) we showed in class it's r (page 17 in https://2prime.github.io/ files/linear/linearslide14filled.pdf)
(C) it's a positive definite matrix with all eigenvalues lareger than r, think why.
(D) r (similar page 17 in https://2prime.github.io/files/linear/ linearslide14filled.pdf)

Answer 2 Using SVD
(A) $\operatorname{rank}\left(A^{T}\right)=\operatorname{dim}\left(\operatorname{row}\left(A^{T}\right)\right)=\operatorname{dim}(\operatorname{col}(A))=\operatorname{rank}(A)=r$.
(B) Let $A=U \Sigma V^{T}$ be a full SVD. Then,

$$
A A^{T}=\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T}=U \Sigma V^{T} V \Sigma^{T} U^{T}=U \Sigma^{2} U^{T} .
$$

Thus, $U \Sigma^{2} U^{T}$ is a SVD of $A A^{T}$. If Σ has r positive singular values then so will Σ^{2}. Therefore, the rank of $A A^{T}$ is r.
(C) Since $I_{m}=U U^{T}$, the equation above yields $A A^{T}+\lambda I=U \Sigma^{2} U^{T}+$ $\lambda I=U\left(\Sigma^{2}+\lambda I_{m}\right) U^{T}$. Since $\Sigma^{2}+\lambda I=\operatorname{diag}\left(\sigma_{1}^{2}+\lambda, \ldots, \sigma_{r}^{2}+\lambda, \ldots, \lambda\right)$, the rank is m.
(D) $A^{T} A A^{T}=\left(U \Sigma V^{T}\right)^{T}\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T}=V \Sigma^{T} U^{T} U \Sigma V^{T} U^{T} U \Sigma V^{T}=$ $V \Sigma^{T} \Sigma \Sigma^{T} V^{T}=V \Sigma^{4} V^{T}$. Σ^{2} has r positive singular values as like Σ. Therefore, the rank is r.

Questions

- Compute Projections, Learst square solution, QR Decomposition
- Compute Determinate using Cofactor Expansion, Solve linear system using cramer's rule
- Compute Eigenvalues, compute eigenvectors, $A=X B X^{-1}$ how to calculate X

Problem 1

Find the determinant of $I+M$, if M is the rank one matrix $M=v v^{T}$, where v is a column vector $v=\left[\begin{array}{l}a \\ b \\ c\end{array}\right]$.

$$
I+M=\left[\begin{array}{ccc}
1+a^{2} & a b & a c \\
a b & 1+b^{2} & b c \\
a c & b c & 1+c^{2}
\end{array}\right]
$$

$$
\operatorname{det}(I+M)=\operatorname{det}\left[\begin{array}{ccc}
1+a^{2} & a b & a c \\
a b & 1+b^{2} & b c \\
a c & b c & 1+c^{2}
\end{array}\right]
$$

$$
=\left(1+a^{2}\right) \operatorname{det}\left[\begin{array}{cc}
1+b^{2} & b c \\
b c & 1+c^{2}
\end{array}\right]-a b \operatorname{det}\left[\begin{array}{cc}
a b & b c \\
a c & 1+c^{2}
\end{array}\right]+a c \operatorname{det}\left[\begin{array}{cc}
a b & 1+b^{2} \\
a c & b c
\end{array}\right]
$$

$$
=\left(1+a^{2}\right)\left(\left(1+b^{2}\right)\left(1+c^{2}\right)-b c \cdot b c\right)-a b\left(a b\left(1+c^{2}\right)-a c \cdot b c\right)+a c\left(a b \cdot b c-\left(1+b^{2}\right) a c\right)
$$

$$
=1+a^{2}+b^{2}+c^{2}
$$

If you know Sylvester's determinant theorem, the problem becomes incredibly easy. Applied to this particular instance, we get that $\operatorname{det}\left(I+v v^{\top}\right)=$ $\operatorname{det}\left(1+v^{\top} v\right)=1+\|v\|^{2}$

Problem 2

The following matrices have only one eigenvalue: 1. What are the dimensions of the eigenspaces in each case?

$$
\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
0 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
1 & 1 & 0 \\
1 & 1 & 1
\end{array}\right), \quad\left(\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
1 & 0 & 1
\end{array}\right)
$$

For a matrix A, the eigenspace with eigenvalue λ is the kernel of the matrix $A-\lambda I$. Here we have $\lambda=1$, so we subtract I from each of the matrices above:

$$
\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 0 & 0 \\
1 & 0 & 0 \\
1 & 1 & 0
\end{array}\right), \quad\left(\begin{array}{lll}
0 & 0 & 0 \\
0 & 0 & 0 \\
1 & 0 & 0
\end{array}\right)
$$

and find the dimensions of the kernels.
The ranks of these matrices are $0,2,2,1$ respectively, so by the rank-nullity theorem the dimensions of the kernels are $3,1,1,2$.

Answer: 3, 1, 1, 2.

Problem 3

Every permutation matrix leaves $x=(1,1, \ldots, 1)$ unchanged. Then $\lambda=1$. Find two more λ 's (possibly complex) for these permutations P_{1} and P_{2}, from $\operatorname{det}(P-\lambda I)=0$:

$$
P_{1}=\left(\begin{array}{lll}
0 & 1 & 0 \\
0 & 0 & 1 \\
1 & 0 & 0
\end{array}\right), \quad P_{2}=\left(\begin{array}{lll}
0 & 0 & 1 \\
1 & 0 & 0 \\
0 & 1 & 0
\end{array}\right)
$$

Solution:

- $\operatorname{det}\left(P_{1}-\lambda I\right)=1-\lambda^{3}$, therefore $\lambda_{1}=1, \lambda_{2}=\frac{-1+i \sqrt{3}}{2}, \lambda_{3}=\frac{-1-i \sqrt{3}}{2}$.
- $\operatorname{det}\left(P_{2}-\lambda I\right)=(\lambda-1)\left(\lambda^{2}+\lambda-1\right)$, therefore $\lambda_{1}=-1, \lambda_{2}=\lambda_{3}=1$.

Problem 4

Diagonalize A and compute $V \mathbf{A} k V^{-1}$ to prove this formula for A^{k} :

$$
A=\left(\begin{array}{cc}
2 & -1 \\
-1 & 2
\end{array}\right) \text { has } A^{k}=\frac{1}{2}\left(\begin{array}{cc}
1+3^{k} & 1-3^{k} \\
1-3^{k} & 1+3^{k}
\end{array}\right)
$$

Solution:

The eigenvalues of A are 3 and 1 , and the corresponding eigenvectors are $v_{1}=$ $(-1,1), v_{2}=(1,1)$. Therefore, A can be diagonalized as $A=V A V^{-1}$, where $V=\left[v_{1}, v_{2}\right], \Lambda=\left(\begin{array}{ll}3 & 0 \\ 0 & 1\end{array}\right)$ and $V^{-1}=\left(\begin{array}{cc}-1 / 2 & 1 / 2 \\ 1 / 2 & 1 / 2\end{array}\right) . \quad A^{k}=V \Lambda^{k} V^{-1}=$ $\frac{1}{2}\left(\begin{array}{ll}1+3^{k} & 1-3^{k} \\ 1-3^{k} & 1+3^{k}\end{array}\right)$.

Problem 5

Without multiplying

$$
A=\left(\begin{array}{cc}
\cos \theta & -\sin \theta \\
\sin \theta & \cos \theta
\end{array}\right)\left(\begin{array}{cc}
2 & 0 \\
0 & 5
\end{array}\right)\left(\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right)
$$

find:
(a) the determinant of A,
(b) the eigenvalues of A,
(c) the eigenvectors of A,
(d) the reason why A is symmetric positive definite.

Solution:

What we have to notice is that we are given a $Q \Lambda Q^{-1}=Q \Lambda Q^{T}$ decomposition of the matrix, so all the information that we want can be read off from it. For (a) the determinant is equal to the determinant of the diagonal matrix $2 \cdot 5=10$. For (b), we have that the eigenvalues are 2 and 5 . For (c), the eigenvectors are the columns of Q, so $\left[\begin{array}{cc}\cos \theta & \sin \theta\end{array}\right]^{T}$ and $\left[\begin{array}{ll}-\sin \theta & \cos \theta\end{array}\right]^{T}$. The matrix is clearly symmetric since $\left(Q \Lambda Q^{T}\right)^{T}=Q \Lambda Q^{T}$ and its eigenvalues are positive, so it is positive-definite.

