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Graph construction from web data(1)

Webpage www.x.com
href = “www.y.com”
href = “www.z.com”

Webpage www.y.com

href = “www.x.com”
href = “www.a.com”
href = “www.b.com”

Webpage www.z.com
href = “www.a.com”



Graph construction from web data(2)

T

thessaloniki, umbrella

thessaloniki, tower

umbrella, crowd

eiffel, tower




Web pages as a graph
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Internet as a graph

nodes = service providers
edges = connections




Emerging structures

Graph (from web, dalily life) present certain
structural characteristics

Group of nodes interacting with each other
=)Dense inter-connections
:>functionalltopical associations

Community

a.k.a. group, subgroup, module, cluster



Community Types

© Explicit

The result of conscious human decision

7 Implicit

Need special methods to be discovered

~

Emerging from the interactions & activities of users

/




Defining Communities

Often communities are defined with respect to
a graph, G = (V,E) representing a set of objects
(V) and their relations (E).

Even if such graph is not explicit in the raw
data, it is usually possible to construct, e.g.
feature :>vectors :>d|stances :>graph



Communities and graphs
s

7 Given a graph, a community is defined as a set of nodes
that are more densely connected to each other than to

the rest of the network nodes
Internal edge = _ - --_

_____



Graph cuts

A cut is a partition of the vertices of a graph into two
disjoint subsets.

\
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\
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\
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The cut-set of the cut is the set of edges whose end
points are in different subsets of the partition.
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PAGE RANK



An example of Simplified PageRank

1/2 1/2 0
M= (1/2 0 1].
0 1/2 0
 yahoo 1/3 ]
Amazon | = [1/3
| Microsoft | 1/3 ]

1/3 1/2 1/2 0][1/3
1/2 0 11/1/3
1/6 0 1/2 0]|1/3
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o
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PageRank Calculation: first iteration




An example of Simplified PageRank

1/2 1/2 0
M= (1/2 0 1].
0 1/2 0
 yahoo 1/3 ]
Amazon | = [1/3
| Microsoft | 1/3 ]

5/12|  [1/2 1/2 o]]1/3
1/3 | =11/2 0 11|1/2
'1/4| |0 1/2 0]|1/6

PageRank Calculation: second iteration




An example of Simplified PageRank

1/2 1/2 0
M= (1/2 0 1].
0 1/2 0
 yahoo 1/3 ]
Amazon | = [1/3
| Microsoft | 1/3 ]

3/8 | | 5/12 (2/5
11/24 | (17/48| .. [2/5
| 1/6 | |11/48| |1/5]

Convergence after some iterations




Converge to eigenvectors!

@ Simplest method for computing one eigenvalue-
eigenvector pair is power iteration, which repeatedly
multiplies matrix times initial starting vector

- @ Assume A has unique eigenvalue of maximum modulus,
say A\, with corresponding eigenvector v,

@ Then, starting from nonzero vector =, iteration scheme
TR = Axp_

converges to multiple of eigenvector v, corresponding to
dominant eigenvalue \,

19




m m 000
Convergence of Power iteration |ss::
3
o
@ To see why power iteration converges to dominant
eigenvector, express starting vector xq as linear
combination X = aVi+- ot Un

n
T = U =~ Ak. - K K
0 e DA X —Q(Xp V“'('“" +0(y\Ay\ Un

1=1 ,
where v; are eigenvectors of A orgest  egen  Ualue
@ Then all |

xp = Awx)_1 = ‘42;171‘-_2 SRS Akil’»o —

n n
Z )\fa‘-i'l?i — )\11‘ (Oll’l 4 Z(’)\i;{/\l ,)kCt;'l.’g)
=1

=2
@ Since |A\;/\ | < 1 for i > 1, successively higher powers go
to zero, leaving only component corresponding to v




SPECTRAL
CLUSTERING



Motivation
22|
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Motivation

23 |
- Two kinds of clusters

».
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Y

convex shaped non-convex shaped



Motivation

24
- Two kinds of clusters
convex shaped, compact =» k-means

».
&
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convex shaped non-convex shaped



Motivation

25 |
- Two kinds of clusters
convex shaped, compact = k-means
non-convex shaped, connected = spectral clustering

».

&

-

convex shaped non-convex shaped



Key ldea

Project the data points into a new space

Clusters can be trivially detected in the new
space



Key ldea

Project the data points into a new space

Clusters can be trivially detected in the new
space

Next, we will cover
How to find the new space
How to represent data points in the space



Matrix Representations of Graphs




Matrix Representations of Graphs

29 |
- Adjacency matrix W
W= (wj)i,j=1..,n wj;=0

Sy N B .-
- Degree diofanodei ", o> "7 0 o>
- :'I 6 | i
dl - }l=1 Wl] I‘\\® ;" ‘\\ ? 0.7 ,,/
- Degree matrix D N e 0 e

tf—m -

Diagonal matrix with the degrees d4, ..., d,, on the diagonal



Matrix Representations of Graphs

30
- Adjacency matrix W Symmetne
W= (wj)i,j=1..,n wj;=0

- Degree diofanodei ., o> % 0 o5
| f 06 o
“i= }lzl "y “~® y _— ‘\® 0.7 ,,"

- Degree matrix D 08 o 02 L

“h——“

Diagonal matrix with the degrees d4, ..., d,, on the diagonal

(0 08 @6 0 01 0 ) 15 0 0 0 0 0 )
08 0 08 0 0 0 0 16 0 0 0 0
o |©@6 08 0 02 0 o | | 0 0 16 0 0 0
0 0 02 0 08 07 0 0 0 L7 0 0
00 0 0 08 0 08 0 0 0 0 L7 0
\ 0 0 0 07 08 0 ) \ 0 0 0 0 0 15)



Matrix Representations of Graphs

30
- Adjacency matrix W
W= (wj)i,j=1..,n wj;=0

“h——“

- Degree diofanodei ., o> " 0 o5
- L G f 06 ! “ @,:'
d; = }l=1 Wi o § \\® \\® 0

- Degree matrix D S 7

Diagonal matrix with the degrees d4, ..., d,, on the diagonal

( 0 08 06 0 01 0 ) 1.5 0 0 0 0 0 \
08 0 08 0 0 0 0 @6 0 0 0 0
| 06 08 0 02 0 o0 H_| 0 0 16 0 0 o0
0 0 02 0 08 07 0 0 0 17 0 0
0. 0 0 08 0 08 0 0 0 0 17 0
\ 0 0 0 07 08 0 L0 0 0 0 0 15)



Graph Laplacian

31
. D : Degree matrizx
- Graph LaplaCIan W . Adjacency matrix
di = ) wij
L=D-W .
7N ©Lis a gmetic

OMQ@ Symmeh ¢ -

Xx & o e fado



Graph Laplacian

D : Degree matrix

Graph LaplaC|an W . Adjacency matrix
d; = ] Wij
L=D-W P2

Next, we will see some properties of L, which
would be used for spectral clustering

We will work closely with linear algebra,
especially eigenvalues and eigenvectors



Properties of Graph Laplacian (1)

D : Degree matrix

For any vector f € R™ we have W : Adjacency matriz

. ' 1 - . . d; = Er w;; (1)
T 2 1 i)
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f f 2 J (f j ]) I— i) 1_ woQ

/ ij=1 [}
€ W(‘ =0

L PcD J .

o

beuug. £ ond {l) b be dil{ere wt

e o\\wcx\,s lorger WJ)f: B

+en O [) Canie (f1on
we want & and \A)
ol cumbr




Properties of Graph Laplacian (1)

D : Degree matrix

For any vector f € R™ we have W : Adjacency matriz
di=> wy (1)
FrLi=; wa | L i);w; @
Proof: g T

f'Lf=f"pf - ffwys  apply Equation 2

dig ... 0 fl w1 .. Win fl
= (fl,fg, ...,fn) du - (fl,fg, ...,fn) Wij ...
0 e dpn fn Wp1 ... Wnn fn

=Zdifi2_ Z fifjwi;
i=1

,j=1



Properties of Graph Laplacian (1)

D : Degree matrix
For any vector f € R™ we have W : Adjacency matri

fTLf— Zw ' d —wa (1)
zg .
Proof: ;=1 L= D -w @

f'Lf=f"pf - ffwys  apply Equation 2

dig ... 0 fl w1 .. Win fl
= (fl,fg, ...,fn) du - (fl,fg, ...,fn) Wij ...
0 e dpn fn Wp1 ... Wnn fn

=Zdifi2_ Z fifjwi;
i=1

t,j=1

= % (Z diff =2 ) fifjwi+ Zdjf;?)
i=1 i,j=1 i=1




Properties of Graph Laplacian (1)

D : Degree matrix

For any vector f € R™ we have W : Adjacency matri
d; = w; (1)
fTLf_ wa ' L—DZ—WJ/ )
Proof: 2 -

f'Lf=f"pf - ffwys  apply Equation 2

dig ... 0 f1 w1 .. Win fl
= (fl,fg, ...,fn) di,; - (fl,fg, ...,fn) Wij .
0 e lpn fn Wn1 ... Wnn fn

=Zdifi2_ Z fifjwij

3,7=1

(Z‘W > fzf,wu@“z)

1,7=1

Zwaf —2 Z fifiwi; +ZZwi]—ff) apply Equation 1

i=1 j=1 ij=1 j=1i=1

l\Dl’—‘



Properties of Graph Laplacian (1)

I

D : Degree matrix

For any vector f € R™ we have W : Adjacency matri
d; = w; (1)
fTLf_ wa ' L—DZ—WJ/ )
Proof: 2 -

f'Lf=f"pf - ffwys  apply Equation 2

dig ... 0 f1 w1 .. Win fl
= (fl,fg, ...,fn) di,; - (fl,fg, ...,fn) Wij .
0 e lpn fn Wn1 ... Wnn fn

=Zdifi2_ Z fifjwij

3,7=1

(Zd 722 fifju+ Zd f2)

1,7=1

2 (Zwaf? —2 Z fifjwij +ZZwijff) apply Equation 1

i=1 j=1 ij=1 j=1i=1

5 Z wij (fi = £;)°

1_71



Properties of Graph Laplacian (2)

The smallest eigenvalue of L 1s O, the
corresponding eigenvector 1s the constant

one vector 1

QTL-P.: "_{ - W‘) & - ‘(\'\
'l
£ Pig all ong Ve(tor

= (T =0

D : Degree matrix
W . Adjacency matriz

di =5 wy; (D
i=1
L=D-W (2



Properties of Graph Laplacian (2)

D : Degree matrix

The smallest eigenvalue of L 1s O, the W : Adjacency matriz

corresponding eigenvector 1s the constant d; = Z wi; (1)

. L=D—W (2)
one vector 1

Let A be an eigenvalue of L, and v be the corresponding eigenvector,
then Lv = Av.




Properties of Graph Laplacian (2)

D : Degree matrix

The smallest eigenvalue of L 1s O, the W : Adjacency matriz

corresponding eigenvector 1s the constant d; = Z wi; (1)

, L=D—W (2)
one vector 1

Let A be an eigenvalue of L, and v be the corresponding eigenvector,
then Lv = Aw.

Proof:
From Property 1, fILf = 5 Z ij=1 Wij (fi — fg) 2 Vr,

then suppose Lv = \v, we have vI Lv = vT v = \ Z v? > 0.
i=1

Thus the smallest eigenvalue is 0.



Properties of Graph Laplacian (2)

D : Degree matrix

The smallest eigenvalue of L 1s O, the W : Adjacency matriz

corresponding eigenvector 1s the constant d; = Z wi; (1)

, L=D—W (2)
one vector 1

Let A be an eigenvalue of L, and v be the corresponding eigenvector,
then Lv = Aw.

Proof:
From Property 1, fTLf 5 Z ij=1 Wij (fi — fg) 2 Vi,

then suppose Lv = \v, we have vI Lv = vT v = \ Z v? > 0.
i=1

Thus the smallest eigenvalue is 0.

T
L-1=(D-W)1l=D1-W1= (di— > wij> =0=0-1
= F= i =
Thus the corresponding eigenvector is the constant vector.



We Have Done So Many Works...
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Number of Connected Components & Eigenvalues of L

a connected component of an undirected graph is a subgraph in
which any two vertices are connected to each other by paths, and
which is connected to no additional vertices in the supergraph
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Why Spectral Clustering Works?(2)

7 Consider an ideal case
Let the three eigenvectors be three columns of a

matrix U.

Project the rows in U to a 3-dimensional space.
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We Have Done So Many Works...

N
7 Transform the graph to Laplacian L



We Have Done So Many Works...

Transform the graph to Laplacian L

Study the properties of L, basically the
eigenvalues and eigenvectors



We Have Done So Many Works...

Transform the graph to Laplacian L

Study the properties of L, basically the
eigenvalues and eigenvectors

Finally, we can see the relationship between
the graph and the eigenvalues!



Applications: Social Media
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http://next.comp.nus.edu.sg/
http://next.comp.nus.edu.sg/

Smallest eigenvectors means...

Smallest
Ldrgast eigenvectors separate data to two distance class, so stnglest
eigenvectors will separate data to similar groups. lm‘ges-f- _‘

Consider if you want to test a vaccine or a marketing policy....

Synthetic Principle Compoqent Design

10
[ Actual Outcome
8 Synthetic Outcome
A ' No Data
o A g I Treated
‘ i\'j | I Control
4 g i (,.l s Y -
“““““““ ’,/' ; ,I" )’\‘ a 3 W
2 | J ) 4 ,.
¢ )
0 =
2t l\".\
R
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-8}
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(a) Treatment Selected when T = 25
% 10 20 30 w0 50 60

Time

This is my paper!



Example(1)
e J
7 Now let's go through an example.

T n=06, k=2

A B _oaaSaee -
0.1
/, 7 5 \
< o8 @ \ / 0.8 N \
! |
I \ ' )
0.6 \ !
:\ © i . @ @/

~ -
______



Example(2)

1 Step 1: Weighted adjacency matrix W and
degree matrix D A .

______

0.1
Y © | T ® os ‘
.’ ® 0.6 '; ': o ®;
“\\\0.8 e 0.2 \\_0_'_7__

|86 96 (26 (26 || 2% e (5 196 | % [ |6

X, BROM 08 |06 | 0 |NGEE O X |15 ol o |o | o] ©

X, |08 EMN 08| 0 | 0 | O % ol16| o0 | 0| 0o | 0

X (06|08 [ONIEEES 0 | O X3 | O o|16] 0] O 0

X, | 0| 0 [RUSSMENGEN 08 | 0.7 Xy 0 01l o || of o

X, NS o [ o |o0s [MOM 0.3 Xs fo| 0|0 | of17] O

Xs | 0o | oo |o7|os| 0 % | 0 [0 ] 0 0o | o =

Adjacency Matrix W Degree Matrix D



Example(3)
oes J

- Step 2: Laplacian matrix

a9 L=D-W
- p— B .- .
,/” ~\\\ 0.1 ,’, :5 \\\
’I 0.8 @i \\\ I, 0.8 0'8 \\‘
1
1 1
‘\ @ @II'
/7

g

Laplacian Matrix L



Example(4)
_ 69 |
1 Step 3: Eigen-decomposition ol RN N

X4 15 | -08 | -0.6 0 -0.1 0

Eigenvalues | ° % |os BN 05 0 ] 0 | 0

0.18 X, |-06|-05 (UCHIEEE o0 | o
2 08 EEEE 8 EDEE
Xs =04 o | o |-08[ 17 |-08
2.28
Xe | 0 | o | o [-07|-08]|15
2.46 . .
Laplacian Matrix L
2.57

Eigenvectors

-0.4082 0.4084

-0.4082 0.4418

-0.4082 0.3713

-0.4082 0.3713

-0.4082 -0.4050

-0.4082 -0.4452




1 Step 3: Eigen-decomposition
Eigenvalues | °

Eigenvectors

U

Example(5)

0.18

2.08

2.28

2.46

2.57

X (% [5G | |[X | X%
X, (S8l 05 | 06| 0 [EEEE o
X, |-08 [EEEM 08| 0 | 0 | 0O
X, |-06|-08 (ECHESEEE 0 | o
Xe | 0| o [SEEEEE 08 | -07
Xs (04 o | 0 |-08| 17 |-08
X | 0 | 0o | o0 |07]|-08]|15

— |

-0.4082 0.4084
-0.4082 0.4418
-0.4082 0.3713
-0.4082 0.3713
-0.4082 -0.4050
-0.4082 -0.4452




Example(6)
L =
1 Step 4: Embedding

U= 04082 04084
04082 04418
0.4082 03713
0.4082 03713
04082 04050
04082 04452




Example(6)
L2
1 Step 4: Embedding
" U=

04082 04110 Each row represents a data point
0.4082 03713
0.4082 03713
0.4082 04050

0.4082 04452




Example(7)
T
-~ Step 4. Embedding

N/ -0.25 0 0.25 0.5



Example(8)
I
1 Step 5: Clustering
= K-means clustering

05 g 05 @ClusterA

0.25 0.25
-0.25 | -0.25 [

Cluster B
Rl |' L '0'5_|G>| L

-05 -0.25 0 0.25 0.5 -05 -0.25 0 0.25 0.5




Example(8)

1 Step 5: Clustering
= K-means clustering

0.5

0.25

-0.25

-0.5

05

0.25

-0.25




Number of Connected Components & Eigenvalues of L

a connected component of an undirected graph is a subgraph in
which any two vertices are connected to each other by paths, and
which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k, then there are k linear
iIndependent eigenvectors corresponding to v




Number of Connected Components & Eigenvalues of L

a connected component of an undirected graph is a subgraph in
which any two vertices are connected to each other by paths, and
which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k, then there are k linear
iIndependent eigenvectors corresponding to v

indicator vector: 14 = (fy, ..., f,)' € R"  f;€{0,1}




Number of Connected Components & Eigenvalues of L

a connected component of an undirected graph is a subgraph in
which any two vertices are connected to each other by paths, and
which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k, then there are k linear
iIndependent eigenvectors corresponding to v

indicator vector: 1y = (f}, ... f)' € R"  fi€ {0,1}

Proposition 2 (Number of connected components and the spectrum of L) Let G be
an undirected graph with non-negative weights. The multiplicity k of the eigenvalue 0 of
L equals the number of connected components A4, ..., Ay 1n the graph. The eigenspace of
eigenvalue 0 1s spanned by the mdicator vectors 1 , ..., 14, of those components.




Number of Connected Components & Eigenvalues of L

a connected component of an undirected graph is a subgraph in
which any two vertices are connected to each other by paths, and
which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k, then there are k linear
iIndependent eigenvectors corresponding to v

indicator vector: 14 = (fy, ..., f,)' € R"  f;€{0,1}
NN L

.:‘-'J:?:: r‘ L?’ 1, oo 0 0
9 1 . : : . .
. 1 0 ~
> O [ om0 elggnvectors corresponding
% " o | toeigenvalue O
E SN ¥ 0 0 1

Proposition 2 (Number of connected components and the spectrum of L) Let G be
an undirected graph with non-negative weights. The multiplicity k of the eigenvalue 0 of
L equals the number of connected components A4, ..., Ay 1n the graph. The eigenspace of
eigenvalue 0 1s spanned by the mdicator vectors 1y , ..., 14, of those components.




Proof of Proposition 2
T2

D : Degree matriz
W . Adjacenc Yy matrix

n
di = E Wiy
j=1

L=D-W
Lv = \v.



Proof of Proposition 2

D : Degree matrix
When k£ = 1: 1 connected component W : Adjacency matriz

Suppose L - f = 0- f. Then we have d; = i‘: -
j=1

T —fT . 0. f =
fPLf=f"-0-f=0. L—Dow
Lv = \v.



Proof of Proposition 2

D : Degree matrix
When k£ = 1: 1 connected component W : Adjacency matriz

Suppose L - f = 0- f. Then we have d = f 0
j=1

T e T. . —_— :
c\'/‘\A fo_J; nO =0 L=D-Ww
fTLf =5 3 wi (fi = ;) Lv = v,

t,j=1



Proof of Proposition 2

D : Degree matrix
When k£ = 1: 1 connected component W : Adjacency matriz

Suppose L - f = 0- f. Then we have i — f )
j=1

1 : fTLf=% Z (U (fi_fj)2 Lv = Av.

) ij=1



Proof of Proposition 2

D : Degree matrix
When k£ = 1: 1 connected component W : Adjacency matriz

Suppose L - f = 0- f. Then we have i — f )
j=1

1 n fTLf=% Z wi; (fi = f;)° Lv = v,

m .
J ij=1



Proof of Proposition 2

D : Degree matrix
When k£ = 1: 1 connected component W : Adjacency matriz
Suppose L - f = 0- f. Then we have 4 = z": .
i i)
QVQ\A S L=D-w
i e 1 ¢ 2 (1) — o
e 1 J f Lf_Q.Z wij (fi = f;) 1: Ly = v
i,0=1 f — :
1




Proof of Proposition 2

D : Degree matrix
When k£ = 1: 1 connected component W : Adjacency matriz
TL

Suppose L - f = 0- f. Then we have b= 3w
j=1

V\A PRI=170-7=0 L=b—W
1 n fTszl Zn: w; (fi_fj)2 (1 ) Lv = \v.

m J 2ij=1 f

When k£ > 1: several connected components

We assume that the vertices are ordered according to the connected
components they belong to. In this case, the adjacency matrix W has a
block diagonal form, and the same is true for the matrix L:




Proof of Proposition 2

D : Degree matrix

When k£ = 1: 1 connected component W : Adjacency matrix
Suppose L - f = 0- f. Then we have d; — i wij
‘\/‘\A AT, L=i)=l—w
: 1 — 2 (1 ) _
1 - n : fTLf=§i§=:l'wij (fz‘_fj)f_ 15 Lv= .
1
\

When k£ > 1: several connected components

We assume that the vertices are ordered according to the connected
components they belong to. In this case, the adjacency matrix W has a
block diagonal form, and the same is true for the matrix L:

L L
'= i *.
—— kl..

Kl i HER
) §9% as
X P Y
P 3 'y ; -

FA & ¥ .
3 L) 4!- {
% AT 2o i
e TP o o
e el
t W g

Eigenvalues of L is the union of the eigenvalues of L;,
while the eigenvectors is given by v; filled with 0s.



Spectral Clustering Algorithm

~ Input: Graph S € R™*™, number k of clusters to form
=@ Compute adjacency matrix W and degree matrix D
o LaplacianL=D -W



Spectral Clustering Algorithm

o Input: Graph S € R™*™, number k of clusters to form
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Representing data in the new space!



Spectral Clustering Algorithm

Input: Graph S € k"™, number k of clusters to form
Compute adjacency matrix W and degree matrix D
LaplacianL=D -W
Compute the first k eigenvectors u,, ..., u, of L
Let y e RV*k contain the vectors u,, ..., u, as columns
Let y, € R¥be the vector corresponding to the i-th row of U
Cluster the points (y) i=1,..N Into k clusters using k-means

Time Complexity: O(n3)



Why Spectral Clustering Works?(1)

- Consider an ideal case

There are no similarities between any nodes in
different connected components

This conforms to Proposition 2:

Proposition 2 (Number of connected components and the spectrum of L) Let G be
an undirected graph with non-negative weights. The multiplicity k of the eigenvalue 0 of
L equals the number of connected components A4, ..., Ay in the graph. The eigenspace of
eigenvalue 0 1s spanned by the indicator vectors 1 , ..., ll4, of those components.

ey
cpst T -'.:-.-,.
NG
-o:- t-\c
2 .

g 1 4
% =
3 ‘L
'.!: o

"o
z
-~ .
4 of
o ;'_‘
e
e '!
- - "
"t i
\ . + 'y
N 4
+
1




Why Spectral Clustering Works?(1)

Consider an ideal case

There are no similarities between any nodes in
different connected components

Compute the weighted adjacency matrix W and degree

matrix D.
L = D - W, compute L’'s 3 eigenvectors of eigenvalue
0.
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Consider an ideal case

There are no similarities between any nodes in
different connected components

Compute the weighted adjacency matrix W and
degree matrix D.

L = D - W, compute L’'s 3 eigenvectors of eigenvalue
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First three eigenvectors




Why Spectral Clustering Works?(2)

7 Consider an ideal case
Let the three eigenvectors be three columns of

matrix U.
| 0 L 00
L : : 0 1 : :
1 0 1 0 : 0 :
L= L, = 0 1 0 U= o 1 0
: 0 1: . 0 1.
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First three eigenvectors



Why Spectral Clustering Works?(2)

7 Consider an ideal case
Let the three eigenvectors be three columns of a

matrix U.

Project the rows in U to a 3-dimensional space.
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Why Spectral Clustering Works?(3)

81
- Consider an ideal case

Now we use K-Means in this space, we can have
very good results.

# of 0 eigenvalues = # of connected components
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Why Spectral Clustering Works?(4)

I
7 What if not the ideal case?
~ We need to introduce Perturbation Theory.

|deal Case
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o83
- What if not the ideal case?

~ We need to introduce Perturbation Theory.
= Perturbation is like noise.
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Why Spectral Clustering Works?(5)

84|
- What if not the ideal case?

Perturbation Theory will not be formally discussed
nere.

References will be offered on IVLE.




Why Spectral Clustering Works?(5)

What if not the ideal case?

Perturbation Theory will not be formally discussed
nere.

What you need to know is:

For ideal case, the between-cluster similarity is O.

The first k eigenvectors of Laplacian matrix L are
indicators of clusters.

Forreal case, L'=L + H, where H is the perturbation.

Perturbation theory tells us the eigenvectors generated
from L’ will be very close to the ideal vectors from L,
bounded by a small value.




Applications: Social Media
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