GRAPH AS LINEAR ALGEBRA

Spectral Clustering and Page Rank

INTRODUCTION

-BY HONG HANDE

Facebook Group

https://www.facebook.com/thebeatles?rf=111113312246958

Flickr group

http://www.flickr.com/groups/49246928@N00/pool/with/417646359/\#photo_417646359

Math UA-Linear Algebra

Whole class as a Sub-community community

Graph construction from web data(1)

Webpage www.x.com

$$
\begin{aligned}
& \text { href }=\text { "www.y.com" } \\
& \text { href }=\text { "www.z.com" }
\end{aligned}
$$

Webpage www.y.com
href = "www.x.com"
href = "www.a.com"
href = "www.b.com"

Webpage www.z.com

[^0]
Graph construction from web data(2)

thessaloniki, umbrella

umbrella, crowd

eiffel, tower

Web pages as a graph

Cnn.com

Lots of links, lots of images. (1316 tags)
blue: for links (the A tag)
red: for tables (TABLE, TR and TD tags)
green: for the DIV tag
violet: for images (the IMG tag)
yellow: for forms (FORM, INPUT, TEXTAREA, SELECT and OPTION tags)
orange: for linebreaks and blockquotes (BR, P, and BLOCKQUOTE tags)
black: the HTML tag, the root node
gray: all other tags

Internet as a graph

nodes = service providers edges $=$ connections

hierarchical structure

S. Carmi,S. Havlin, S. Kirkpatrick, Y. Shavitt, E. Shir. A model of Internet topology using k-shell
decomposition. PNAS 104 (27), pp.

Emerging structures

- Graph (from web, daily life) present certain structural characteristics
\square Group of nodes interacting with each other
\Rightarrow Dense inter-connections
functional/topical associations

Community

a.k.a. group, subgroup, module, cluster

Community Types

- Explicit
\square The result of conscious human decision

Implicit

\square Emerging from the interactions \& activities of users
\square Need special methods to be discovered

Defining Communities

- Often communities are defined with respect to a graph, $G=(V, E)$ representing a set of objects (V) and their relations (E).
- Even if such graph is not explicit in the raw data, it is usually possible to construct, e.g. feature \Rightarrow vectors \Rightarrow distances \Rightarrow graph

Communities and graphs

Given a graph, a community is defined as a set of nodes that are more densely connected to each other than to the rest of the network nodes

Graph cuts

A cut is a partition of the vertices of a graph into two disjoint subsets.

- The cut-set of the cut is the set of edges whose end points are in different subsets of the partition.

PAGE RANK

An example of Simplified PageRank

$$
\left[\begin{array}{l}
1 / 3 \\
1 / 2 \\
1 / 6
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 \\
0 & 1 / 2 & 0
\end{array}\right]\left[\begin{array}{l}
1 / 3 \\
1 / 3 \\
1 / 3
\end{array}\right]
$$

PageRank Calculation: first iteration

An example of Simplified PageRank

$$
M=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 \\
0 & 1 / 2 & 0
\end{array}\right]
$$

$\left[\begin{array}{c}\text { yahoo } \\ \text { Amazon } \\ \text { Microsoft }\end{array}\right]=\left[\begin{array}{l}1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]$

$$
\left[\begin{array}{c}
5 / 12 \\
1 / 3 \\
1 / 4
\end{array}\right]=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 \\
0 & 1 / 2 & 0
\end{array}\right]\left[\begin{array}{l}
1 / 3 \\
1 / 2 \\
1 / 6
\end{array}\right]
$$

PageRank Calculation: second iteration

An example of Simplified PageRank

$$
M=\left[\begin{array}{ccc}
1 / 2 & 1 / 2 & 0 \\
1 / 2 & 0 & 1 \\
0 & 1 / 2 & 0
\end{array}\right]
$$

$\left[\begin{array}{c}\text { yahoo } \\ \text { Amazon } \\ \text { Microsoft }\end{array}\right]=\left[\begin{array}{l}1 / 3 \\ 1 / 3 \\ 1 / 3\end{array}\right]$

$$
\left[\begin{array}{c}
3 / 8 \\
11 / 24 \\
1 / 6
\end{array}\right]\left[\begin{array}{c}
5 / 12 \\
17 / 48 \\
11 / 48
\end{array}\right] \ldots\left[\begin{array}{l}
2 / 5 \\
2 / 5 \\
1 / 5
\end{array}\right]
$$

Convergence after some iterations

Converge to eigenvectors!

- Simplest method for computing one eigenvalueeigenvector pair is power iteration, which repeatedly multiplies matrix times initial starting vector
- Assume A has unique eigenvalue of maximum modulus, say λ_{1}, with corresponding eigenvector v_{1}
- Then, starting from nonzero vector x_{0}, iteration scheme

$$
x_{k}=\boldsymbol{A} x_{k-1}
$$

converges to multiple of eigenvector v_{1} corresponding to dominant eigenvalue λ_{1}

Convergence of Power iteration

- To see why power iteration converges to dominant eigenvector, express starting vector x_{0} as linear combination

$$
X=\alpha_{1} V_{1}+\cdots+\alpha_{n} V_{n}
$$

$$
x_{0}=\sum_{i=1}^{n} \alpha_{i} v_{i} \quad \Rightarrow A^{k} x=\frac{\alpha_{1} \lambda_{i}^{k}}{\lambda} v_{1}+\cdots+\alpha_{n} \lambda_{n}^{k} v_{n}
$$

where v_{i} are eigenvectors of A

- Then

$$
\begin{aligned}
& \text { largest eigen value. } \\
& \alpha_{1} \lambda_{1}^{k} \text { growth much foster }
\end{aligned}
$$

$$
\begin{gathered}
\boldsymbol{x}_{k}=\boldsymbol{A} \boldsymbol{x}_{k-1}=\boldsymbol{A}^{2} \boldsymbol{x}_{k-2}=\cdots=\boldsymbol{A}^{k} x_{0}= \\
\sum_{i=1}^{n} \lambda_{i}^{k} \alpha_{i} \boldsymbol{v}_{i}=\lambda_{1}^{k}\left(\alpha_{1} \boldsymbol{v}_{1}+\sum_{i=2}^{n}\left(\lambda_{i} / \lambda_{1}\right)^{k} \alpha_{i} \boldsymbol{v}_{i}\right)
\end{gathered}
$$

- Since $\left|\lambda_{i} / \lambda_{1}\right|<1$ for $i>1$, successively higher powers go to zero, leaving only component corresponding to v_{1}

SPECTRAL CLUSTERING

Motivation

Motivation

Two kinds of clusters

Motivation

Two kinds of clusters
\square convex shaped, compact \Rightarrow k-means

Motivation

Two kinds of clusters
\square convex shaped, compact \Rightarrow k-means
\square non-convex shaped, connected \Rightarrow spectral clustering

convex shaped

non-convex shaped

Key Idea

- Project the data points into a new space

Clusters can be trivially detected in the new space

Key Idea

Project the data points into a new space

- Clusters can be trivially detected in the new space
- Next, we will cover
- How to find the new space
- How to represent data points in the space

Matrix Representations of Graphs

Matrix Representations of Graphs

- Adjacency matrix W

$$
W=\left(w_{i j}\right) i, j=1, \ldots, n \quad w_{i j} \geq 0
$$

- Degree di of a node i

$$
d_{i}=\sum_{j=1}^{n} w_{i j}
$$

Degree matrix D

Diagonal matrix with the degrees d_{1}, \ldots, d_{n} on the diagonal

Matrix Representations of Graphs

- Adjacency matrix W Symmetric

$$
W=\left(w_{i j}\right) i, j=1, \ldots, n \quad w_{i j} \geq 0_{\mathrm{A}}
$$

Degree d_{i} of a node i

$$
d_{i}=\sum_{j=1}^{n} w_{i j}
$$

Degree matrix D

Diagonal matrix with the degrees d_{1}, \ldots, d_{n} on the diagonal

$$
W=\left(\begin{array}{cccccc}
0 & 0.8 & 0.6 & 0 & 0.1 & 0 \\
0.8 & 0 & 0.8 & 0 & 0 & 0 \\
0.6 & 0.8 & 0 & 0.2 & 0 & 0 \\
0 & 0 & 0.2 & 0 & 0.8 & 0.7 \\
0.1 & 0 & 0 & 0.8 & 0 & 0.8 \\
0 & 0 & 0 & 0.7 & 0.8 & 0
\end{array}\right) \quad D=\left(\begin{array}{cccccc}
1.5 & 0 & 0 & 0 & 0 & 0 \\
0 & 1.6 & 0 & 0 & 0 & 0 \\
0 & 0 & 1.6 & 0 & 0 & 0 \\
0 & 0 & 0 & 1.7 & 0 & 0 \\
0 & 0 & 0 & 0 & 1.7 & 0 \\
0 & 0 & 0 & 0 & 0 & 1.5
\end{array}\right)
$$

Matrix Representations of Graphs

- Adjacency matrix W

$$
W=\left(w_{i j}\right) i, j=1, \ldots, n \quad w_{i j} \geq 0 \quad 0,8+0,6+0, \mid
$$

Degree di of a node i

$$
d_{i}=\sum_{j=1}^{n} w_{i j}
$$

Degree matrix D
Diagonal matrix with the degrees d_{1}, \ldots, d_{n} on the diagonal

$$
W=\left(\begin{array}{cccccc}
0 & 0.8 & 0.6 & 0 & 0.1 & 0 \\
0.8 & 0 & 0.8 & 0 & 0 & 0 \\
0.6 & 0.8 & 0 & 0.2 & 0 & 0 \\
0 & 0 & 0.2 & 0 & 0.8 & 0.7 \\
0.1 & 0 & 0 & 0.8 & 0 & 0.8 \\
0 & 0 & 0 & 0.7 & 0.8 & 0
\end{array}\right) \quad D=\left(\begin{array}{cccccc}
1.5 & 0 & 0 & 0 & 0 & 0 \\
0 & 1.6 & 0 & 0 & 0 & 0 \\
0 & 0 & 1.6 & 0 & 0 & 0 \\
0 & 0 & 0 & 1.7 & 0 & 0 \\
0 & 0 & 0 & 0 & 1.7 & 0 \\
0 & 0 & 0 & 0 & 0 & 1.5
\end{array}\right)
$$

Graph Laplacian

Graph Laplacian
D : Degree matrix

$$
\begin{aligned}
& L=D-W \\
& \lambda \uparrow \\
& \text { diag symmetric. }
\end{aligned}
$$

$\leftarrow L$ is a symmetric matrix

$x^{\top} L x$ is a quadratic function

Graph Laplacian

Graph Laplacian

$$
L=D-W
$$

$$
d_{i}=\sum_{j=1}^{n} w_{i j}
$$

Next, we will see some properties of L, which would be used for spectral clustering

- We will work closely with linear algebra, especially eigenvalues and eigenvectors

Properties of Graph Laplacian (1)

For any vector $f \in \mathbb{R}^{n}$ we have
D : Degree matrix
W : Adjacency matrix
L is P.S.D

$$
w_{i j}=0
$$

because

$$
i=j
$$

f_{i} and f_{j} can be different
$f^{\top} L f$ always larger

$$
w_{i j}=\square
$$ than 0 ii connection We want f_{i} and f_{j} are similar

Properties of Graph Laplacian (1)

For any vector $f \in \mathbb{R}^{n}$ we have

Proof:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} .
$$

$f^{T} L f=f^{T} D f-f^{T} W f \quad$ apply Equation 2

$$
\begin{aligned}
& =\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(\begin{array}{ccc}
d_{11} & \ldots & 0 \\
\ldots & d_{i i} & \ldots \\
0 & \ldots & d_{n n}
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
\ldots \\
f_{n}
\end{array}\right)-\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(\begin{array}{ccc}
w_{11} & \ldots & w_{1 n} \\
\ldots & w_{i j} & \ldots \\
w_{n 1} & \ldots & w_{n n}
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
\ldots \\
f_{n}
\end{array}\right) \\
& =\sum_{i=1}^{n} d_{i} f_{i}^{2}-\sum_{i, j=1}^{n} f_{i} f_{j} w_{i j}
\end{aligned}
$$

Properties of Graph Laplacian (1)

D : Degree matrix
W : Adjacency matrix
$d_{i}=\sum_{j=1}^{n} w_{i j}$
$L=D-W$

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
$$

$f^{T} L f=f^{T} D f-f^{T} W f \quad$ apply Equation 2

$$
\begin{aligned}
& =\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(\begin{array}{lll}
d_{11} & \ldots & 0 \\
\ldots & d_{i i} & \ldots \\
0 & \ldots & d_{n n}
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
\ldots \\
f_{n}
\end{array}\right)-\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(\begin{array}{lll}
w_{11} & \ldots & w_{1 n} \\
\ldots & w_{i j} & \ldots \\
w_{n 1} & \ldots & w_{n n}
\end{array}\right)\left(\begin{array}{l}
f_{1} \\
\ldots \\
f_{n}
\end{array}\right) \\
& =\sum_{i=1}^{n} d_{i} f_{i}^{2}-\sum_{i, j=1}^{n} f_{i} f_{j} w_{i j} \\
& =\frac{1}{2}\left(\sum_{\underline{i=1}}^{n} d_{i} f_{i}^{2}-2 \sum_{i, j=1}^{n} f_{i} f_{j} w_{i j}+\sum_{j=1}^{n} d_{j} f_{j}^{2}\right)
\end{aligned}
$$

Properties of Graph Laplacian (1)

For any vector $f \in \mathbb{R}^{n}$ we have

Proof:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} .
$$

D : Degree matrix
W : Adjacency matrix

$$
\begin{align*}
d_{i} & =\sum_{j=1}^{n} w_{i j} \tag{1}\\
L & =D-W \tag{2}
\end{align*}
$$

$f^{T} L f=f^{T} D f-f^{T} W f \quad$ apply Equation 2

$$
\begin{aligned}
& =\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(\begin{array}{lll}
d_{11} & \ldots & 0 \\
\ldots & d_{i i} & \ldots \\
0 & \ldots & d_{n n}
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
\ldots \\
f_{n}
\end{array}\right)-\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(\begin{array}{lll}
w_{11} & \ldots & w_{1 n} \\
\ldots & w_{i j} & \ldots \\
w_{n 1} & \ldots & w_{n n}
\end{array}\right)\left(\begin{array}{l}
f_{1} \\
\ldots \\
f_{n}
\end{array}\right) \\
& =\sum_{i=1}^{n} d_{i} f_{i}^{2}-\sum_{i, j=1}^{n} f_{i} f_{j} w_{i j} \\
& =\frac{1}{2}\left(\sum_{i=1}^{n} d_{i} f_{i}^{2}-2 \sum_{i, j=1}^{n} f_{i} f_{j} w_{i j}+\sum_{j=1}^{n} d_{j} f_{j}^{2}\right) \\
& =\frac{1}{2}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j} f_{i}^{2}-2 \sum_{i, j=1}^{n} f_{i} f_{j} w_{i j}+\sum_{j=1}^{n} \sum_{i=1}^{n} w_{i j} f_{j}^{2}\right) \quad \text { apply Equation 1 }
\end{aligned}
$$

Properties of Graph Laplacian (1)

For any vector $f \in \mathbb{R}^{n}$ we have

Proof:

$$
f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} .
$$

D : Degree matrix
W : Adjacency matrix

$$
\begin{align*}
d_{i} & =\sum_{j=1}^{n} w_{i j} \tag{1}\\
L & =D-W \tag{2}
\end{align*}
$$

$f^{T} L f=f^{T} D f-f^{T} W f \quad$ apply Equation 2

$$
\begin{aligned}
& =\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(\begin{array}{lll}
d_{11} & \ldots & 0 \\
\ldots & d_{i i} & \ldots \\
0 & \ldots & d_{n n}
\end{array}\right)\left(\begin{array}{c}
f_{1} \\
\ldots \\
f_{n}
\end{array}\right)-\left(f_{1}, f_{2}, \ldots, f_{n}\right)\left(\begin{array}{lll}
w_{11} & \ldots & w_{1 n} \\
\ldots & w_{i j} & \ldots \\
w_{n 1} & \ldots & w_{n n}
\end{array}\right)\left(\begin{array}{l}
f_{1} \\
\ldots \\
f_{n}
\end{array}\right) \\
& =\sum_{i=1}^{n} d_{i} f_{i}^{2}-\sum_{i, j=1}^{n} f_{i} f_{j} w_{i j} \\
& =\frac{1}{2}\left(\sum_{i=1}^{n} d_{i} f_{i}^{2}-2 \sum_{i, j=1}^{n} f_{i} f_{j} w_{i j}+\sum_{j=1}^{n} d_{j} f_{j}^{2}\right) \\
& =\frac{1}{2}\left(\sum_{i=1}^{n} \sum_{j=1}^{n} w_{i j} f_{i}^{2}-2 \sum_{i, j=1}^{n} f_{i} f_{j} w_{i j}+\sum_{j=1}^{n} \sum_{i=1}^{n} w_{i j} f_{j}^{2}\right) \quad \text { apply Equation 1 } \\
& =\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
\end{aligned}
$$

Properties of Graph Laplacian (2)

The smallest eigenvalue of L is 0 , the corresponding eigenvector is the constant one vector $\mathbb{1}$

$$
f^{\top} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j} \frac{\left(f_{i}-f_{j}\right)^{2}}{\uparrow}
$$

if f is all one vector

$$
\Rightarrow f^{\top} L f=0
$$

$$
\begin{align*}
& D: \text { Degree matrix } \\
& W: \text { Adjacency matrix } \\
& d_{i}=\sum_{j=1}^{n} w_{i j} \tag{1}\\
& L=D-W \tag{2}
\end{align*}
$$

Properties of Graph Laplacian (2)

The smallest eigenvalue of L is 0 , the corresponding eigenvector is the constant one vector $\mathbb{1}$

D : Degree matrix
W : Adjacency matrix
$d_{i}=\sum_{j=1}^{n} w_{i j}$
$L=D-W$

Let λ be an eigenvalue of L, and v be the corresponding eigenvector, then $L v=\lambda v$.

Properties of Graph Laplacian (2)

The smallest eigenvalue of L is 0 , the corresponding eigenvector is the constant one vector $\mathbb{1}$

D : Degree matrix
W : Adjacency matrix
$d_{i}=\sum_{j=1}^{n} w_{i j}$
$L=D-W$

Let λ be an eigenvalue of L, and v be the corresponding eigenvector, then $L v=\lambda v$.

Proof:
From Property 1, $f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} \geqslant 0 \forall f$,
then suppose $L v=\lambda v$, we have $v^{T} L v=v^{T} \lambda v=\lambda \overline{\sum_{i=1}^{n}} v_{i}^{2} \geqslant 0$.
Thus the smallest eigenvalue is 0 .

Properties of Graph Laplacian (2)

The smallest eigenvalue of L is 0 , the corresponding eigenvector is the constant one vector $\mathbb{1}$

D : Degree matrix
W : Adjacency matrix
$d_{i}=\sum_{j=1}^{n} w_{i j}$
$L=D-W$

Let λ be an eigenvalue of L, and v be the corresponding eigenvector, then $L v=\lambda v$.

Proof:
From Property 1, $f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} \geqslant 0 \forall f$,
then suppose $L v=\overline{=\lambda}$, we have $v^{T} L v=v^{T} \lambda v=\lambda \overline{\sum_{i=1}^{n}} v_{i}^{2} \geqslant 0$.
Thus the smallest eigenvalue is 0 .
$\underline{L \cdot \mathbb{1}}=(D-W) \mathbb{1}=D \mathbb{1}-W \mathbb{1}=\left(d_{i}-\sum_{j=1}^{n} w_{i j}\right)_{i}=\mathbb{0}=\underline{0 \cdot \mathbb{1}}$
Thus the corresponding eigenvector is the constant vector.

We Have Done So Many Works...

If My Graph is

is also a 0.th eigenvector

$$
f_{1}=f_{2}=f_{3}=\mathbb{1} \quad \quad f_{4}=f_{5}=0
$$

$$
f^{\top} L f=\left(f_{1}-f_{2}\right)^{2}+\left(f_{2}-f_{3}\right)^{2}+\left(f_{3}-f_{1}\right)^{2}+\left(f_{4}-f_{5}\right)^{2}
$$

Number of Connected Components \& Eigenvalues of L

a connected component of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph

Different
social Group!

Why Spectral Clustering Works?(2)

Consider an ideal case
\square Let the three eigenvectors be three columns of a matrix \boldsymbol{U}.
\square Project the rows in \boldsymbol{U} to a 3-dimensional space.

We Have Done So Many Works...

- Transform the graph to Laplacian L

We Have Done So Many Works...

- Transform the graph to Laplacian L
\square Study the properties of L, basically the eigenvalues and eigenvectors

We Have Done So Many Works...

- Transform the graph to Laplacian L

Study the properties of L, basically the eigenvalues and eigenvectors

Finally, we can see the relationship between the graph and the eigenvalues!

Applications: Social Media

Smallest eigenvectors means...

Smallest

 Ldrgest eigenvectors separate data to two distance class, so shallest eigenvectors will separate data to similar groups. Consider if you want to test a vaccine or a marketing policy....

(a) Treatment Selected when $T=25$

This is my paper! https:/ /arxiv.org/pdf/2211.15241.pdf

Example(1)

Now let's go through an example.

- $n=6, k=2$

Example(2)

Step 1: Weighted adjacency matrix \boldsymbol{W} and degree matrix \boldsymbol{D}

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
x_{1}	0	0.8	0.6	0	0.1	0
x_{2}	0.8	0	0.8	0	0	0
x_{3}	0.6	0.8	0	0.2	0	0
x_{4}	0	0	0.2	0	0.8	0.7
x_{5}	0.1	0	0	0.8	0	0.8
x_{6}	0	0	0	0.7	0.8	0

Adjacency Matrix W

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
x_{1}	1.5	0	0	0	0	0
x_{2}	0	1.6	0	0	0	0
x_{3}	0	0	1.6	0	0	0
x_{4}	0	0	0	1.7	0	0
x_{5}	0	0	0	0	1.7	0
x_{6}	0	0	0	0	0	1.5

Degree Matrix \boldsymbol{D}

Example(3)

Step 2: Laplacian matrix
 - L=D-W

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
x_{1}	1.5	-0.8	-0.6	0	-0.1	0
x_{2}	-0.8	1.6	-0.8	0	0	0
x_{3}	-0.6	-0.8	1.6	-0.2	0	0
x_{4}	0	0	-0.2	1.7	-0.8	-0.7
x_{5}	-0.1	0	0	-0.8	1.7	-0.8
x_{6}	0	0	0	-0.7	-0.8	1.5

Laplacian Matrix L

Example(4)

Step 3: Eigen-decomposition
\square Eigenvalues

0
0.18
2.08
2.28
2.46
2.57

	x_{1}	x_{2}	\times_{3}	\times_{4}	x_{5}	\times_{6}
x_{1}	1.5	-0.8	-0.6	0	-0.1	0
x_{2}	-0.8	1.6	-0.8	0	0	0
x_{3}	-0.6	-0.8	1.6	-0.2	0	0
X_{4}	0	0	-0.2	1.7	-0.8	-0.7
X_{5}	-0.1	0	0	-0.8	1.7	-0.8
χ_{6}	0	0	0	-0.7	-0.8	1.5

- Eigenvectors

-0.4082	0.4084		\ldots
-0.4082	0.4418		\ldots
-0.4082	0.3713		\ldots
-0.4082	-0.3713		\ldots
-0.4082	-0.4050		\ldots
-0.4082	-0.4452		

Example(5)

Step 3: Eigen-decomposition
\square Eigenvalues

0
0.18
2.08
2.28
2.46
2.57

	x_{1}	x_{2}	x_{3}	x_{4}	x_{5}	x_{6}
x_{1}	1.5	-0.8	-0.6	0	-0.1	0
x_{2}	-0.8	1.6	-0.8	0	0	0
x_{3}	-0.6	-0.8	1.6	-0.2	0	0
x_{4}	0	0	-0.2	1.7	-0.8	-0.7
x_{5}	-0.1	0	0	-0.8	1.7	-0.8
x_{6}	0	0	0	-0.7	-0.8	1.5

- Eigenvectors $=$

-0.4082	0.4084		\ldots
-0.4082	0.4418		\ldots
-0.4082	0.3713	\ldots	
-0.4082	-0.3713	\ldots	
-0.4082	-0.4050	\ldots	
-0.4082	-0.4452		\ldots

Example(6)

Step 4: Embedding

$\square \mathbf{U}=$

.0 .4082	0.4084
.0 .4082	0.4418
0.4082	0.3713
.0 .4082	-0.3713
.0 .4082	-0.4050
.0 .4082	.0 .4452

Example(6)

Step 4: Embedding

0.4082	0.4084
0.4082	0.4418
0.4082	0.3713
0.4082	-0.3713
0.4082	-0.4050
0.4082	-0.4452

Each row represents a data point

Example(7)

Step 4: Embedding
$\square \mathbf{U}=$

0.4082	0.4084
0.4082	0.4418
0.4082	0.3713

\square Mapitlo a wo-uintensional space $1025 \quad 028$

Example(8)

Step 5: Clustering

\square K-means clustering

Example(8)

Step 5: Clustering

\square K-means clustering

Number of Connected Components \& Eigenvalues of L

a connected component of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k , then there are k linear independent eigenvectors corresponding to v

Number of Connected Components \& Eigenvalues of L

a connected component of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k , then there are k linear independent eigenvectors corresponding to v

$$
\text { indicator vector: } \quad \mathbb{1}_{A}=\left(f_{1}, \ldots, f_{n}\right)^{\prime} \in \mathbb{R}^{n} \quad f_{i} \in\{0,1\}
$$

Number of Connected Components \& Eigenvalues of L

a connected component of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k , then there are k linear independent eigenvectors corresponding to v
indicator vector: $\mathbb{1}_{A}=\left(f_{1}, \ldots, f_{n}\right)^{\prime} \in \mathbb{R}^{n} \quad f_{i} \in\{0,1\}$

[^1]
Number of Connected Components \& Eigenvalues of L

a connected component of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k , then there are k linear independent eigenvectors corresponding to v
indicator vector: $\mathbb{1}_{A}=\left(f_{1}, \ldots, f_{n}\right)^{\prime} \in \mathbb{R}^{n} \quad f_{i} \in\{0,1\}$

eigenvectors corresponding to eigenvalue 0

Proposition 2 (Number of connected components and the spectrum of L) Let G be an undirected graph with non-negative weights. The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_{1}, \ldots, A_{k} in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}$ of those components.

Proof of Proposition 2

D : Degree matrix
W : Adjacency matrix
$d_{i}=\sum_{j=1}^{n} w_{i j}$
$L=D-W$
$L v=\lambda v$.

Proof of Proposition 2

When $k=1$: 1 connected component Suppose $L \cdot f=0 \cdot f$. Then we have

D : Degree matrix
W : Adjacency matrix
$d_{i}=\sum_{j=1}^{n} w_{i j}$
$L=D-W$
$L v=\lambda v$.

Proof of Proposition 2

When $k=1$: 1 connected component
Suppose $L \cdot f=0 \cdot f$. Then we have

$$
\begin{aligned}
& f^{T} L f=f^{T} \cdot 0 \cdot f=0 \\
& f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
\end{aligned}
$$

D : Degree matrix
W : Adjacency matrix
$d_{i}=\sum_{j=1}^{n} w_{i j}$
$L=D-W$
$L v=\lambda v$.

Proof of Proposition 2

When $k=1$: 1 connected component
Suppose $L \cdot f=0 \cdot f$. Then we have

$$
\begin{aligned}
& f^{T} L f=f^{T} \cdot 0 \cdot f=0 \\
& f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
\end{aligned}
$$

D : Degree matrix
W : Adjacency matrix
$d_{i}=\sum_{j=1}^{n} w_{i j}$
$L=D-W$
$L v=\lambda v$.

Proof of Proposition 2

When $k=1$: 1 connected component
Suppose $L \cdot f=0 \cdot f$. Then we have

$$
\begin{aligned}
& f^{T} L f=f^{T} \cdot 0 \cdot f=0 \\
& f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2}
\end{aligned}
$$

D : Degree matrix
W : Adjacency matrix
$d_{i}=\sum_{j=1}^{n} w_{i j}$
$L=D-W$
$L v=\lambda v$.

Proof of Proposition 2

When $k=1$: 1 connected component
Suppose $L \cdot f=0 \cdot f$. Then we have

$$
\begin{aligned}
& f^{T} L f=f^{T} \cdot 0 \cdot f=0 . \\
& f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} \\
& f=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
\end{aligned}
$$

D : Degree matrix
W : Adjacency matrix
$d_{i}=\sum_{j=1}^{n} w_{i j}$
$L=D-W$
$L v=\lambda v$.

Proof of Proposition 2

When $k=1$: 1 connected component
Suppose $L \cdot f=0 \cdot f$. Then we have

$$
\begin{aligned}
& f^{T} L f=f^{T} \cdot 0 \cdot f=0 . \\
& f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} \\
& f=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
\end{aligned}
$$

D : Degree matrix
W : Adjacency matrix
$d_{i}=\sum_{j=1}^{n} w_{i j}$
$L=D-W$
$L v=\lambda v$.

When $k>1$: several connected components
We assume that the vertices are ordered according to the connected components they belong to. In this case, the adjacency matrix W has a block diagonal form, and the same is true for the matrix L :

1
\vdots
1
0
0
\vdots
0

Proof of Proposition 2

When $k=1$: 1 connected component
Suppose $L \cdot f=0 \cdot f$. Then we have

$$
\begin{aligned}
& f^{T} L f=f^{T} \cdot 0 \cdot f=0 . \\
& f^{T} L f=\frac{1}{2} \sum_{i, j=1}^{n} w_{i j}\left(f_{i}-f_{j}\right)^{2} \\
& f=\left(\begin{array}{c}
1 \\
\vdots \\
1
\end{array}\right)
\end{aligned}
$$

D : Degree matrix
W : Adjacency matrix
$d_{i}=\sum_{j=1}^{n} w_{i j}$
$L=D-W$
$L v=\lambda v$.

When $k>1$: several connected components
We assume that the vertices are ordered according to the connected components they belong to. In this case, the adjacency matrix W has a block diagonal form, and the same is true for the matrix L :

Eigenvalues of L is the union of the eigenvalues of L_{i}, while the eigenvectors is given by v_{i} filled with 0 s.

Spectral Clustering Algorithm

- Input: Graph $S \in \mathbb{R}^{n \times n}$, number k of clusters to form
- Compute adjacency matrix W and degree matrix D
- Laplacian $\mathrm{L}=\mathrm{D}$ - W

Spectral Clustering Algorithm

- Input: Graph $S \in \mathbb{R}^{n \times n}$, number k of clusters to form
- Compute adjacency matrix W and degree matrix D
- Laplacian L = D - W
- Compute the first k eigenvectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ of L
\square Let $\boldsymbol{U} \in \mathbb{R}^{\boldsymbol{N} \times \boldsymbol{k}}$ contain the vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ as columns

Spectral Clustering Algorithm

- Input: Graph $S \in \mathbb{R}^{n \times n}$, number k of clusters to form
- Compute adjacency matrix W and degree matrix D
- Laplacian $\mathrm{L}=\mathrm{D}-\mathrm{W}$
\square Compute the first k eigenvectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{k}$ of L
\square Let $\boldsymbol{U} \in \mathbb{R}^{N \times k}$ contain the vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ as columns
New space found!

Spectral Clustering Algorithm

- Input: Graph $S \in \mathbb{R}^{n \times n}$, number k of clusters to form
- Compute adjacency matrix W and degree matrix D
- Laplacian $\mathrm{L}=\mathrm{D}-\mathrm{W}$
- Compute the first k eigenvectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ of L
\square Let $U \in \mathbb{R}^{N \times k}$ contain the vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ as columns
\square Let $y_{i} \in \mathbb{R}^{k}$ be the vector corresponding to the i-th row of U
\square Cluster the points $\left(y_{i}\right) i=1, \ldots, N$ into k clusters using k-means

Spectral Clustering Algorithm

- Input: Graph $S \in \mathbb{R}^{n \times n}$, number k of clusters to form
- Compute adjacency matrix W and degree matrix D
- Laplacian $\mathrm{L}=\mathrm{D}-\mathrm{W}$
- Compute the first k eigenvectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ of L
\square Let $\boldsymbol{U} \in \mathbb{R}^{\boldsymbol{N} \times \boldsymbol{k}}$ contain the vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ as columns
Let $y_{i} \in \mathbb{R}^{k}$ be the vector corresponding to the i-th row of U Cluster the points $\left(\boldsymbol{y}_{i}\right) \mathbf{i = 1 , \ldots , N}$ into k clusters using k-means

Representing data in the new space!

Spectral Clustering Algorithm

- Input: Graph $S \in \mathbb{R}^{n \times n}$, number k of clusters to form
- Compute adjacency matrix W and degree matrix D
- Laplacian $\mathrm{L}=\mathrm{D}$ - W
- Compute the first k eigenvectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ of L
\square Let $U \in \mathbb{R}^{N \times k}$ contain the vectors $\boldsymbol{u}_{1}, \ldots, \boldsymbol{u}_{\boldsymbol{k}}$ as columns
Let $y_{i} \in \mathbb{R}^{k}$ be the vector corresponding to the i-th row of U
\square Cluster the points $\left(y_{i}\right) i=1, \ldots, N$ into k clusters using k-means

Time Complexity: O(n ${ }^{3}$)

Why Spectral Clustering Works?(1)

- Consider an ideal case
\square There are no similarities between any nodes in different connected components
- This conforms to Proposition 2:

Proposition 2 (Number of connected components and the spectrum of L) Let G be
an undirected graph with non-negative weights. The multiplicity k of the eigenvalue 0 of
L equals the number of connected components A_{1}, \ldots, A_{k} in the graph. The eigenspace of
eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}$ of those components.

Why Spectral Clustering Works?(1)

Consider an ideal case
\square There are no similarities between any nodes in different connected components
\square Compute the weighted adjacency matrix \boldsymbol{W} and degree matrix D.
$\square \boldsymbol{L}=\boldsymbol{D}-\boldsymbol{W}$; compute \mathbf{L} 's 3 eigenvectors of eigenvalue 0.

Why Spectral Clustering Works?(1)

Consider an ideal case
\square There are no similarities between any nodes in different connected components
\square Compute the weighted adjacency matrix \boldsymbol{W} and degree matrix \boldsymbol{D}.
$\square \boldsymbol{L}=\boldsymbol{D}-\boldsymbol{W}$; compute \boldsymbol{L} 's 3 eigenvectors of eigenvalue 0.

First three eigenvectors

Why Spectral Clustering Works?(2)

Consider an ideal case
\square Let the three eigenvectors be three columns of matrix \boldsymbol{U}.

First three eigenvectors

Why Spectral Clustering Works?(2)

Consider an ideal case
\square Let the three eigenvectors be three columns of a matrix \boldsymbol{U}.
\square Project the rows in \boldsymbol{U} to a 3-dimensional space.

Why Spectral Clustering Works?(3)

Consider an ideal case

- Now we use K-Means in this space, we can have very good results.
- \# of 0 eigenvalues = \# of connected components

Why Spectral Clustering Works?(4)

- What if not the ideal case?
\square We need to introduce Perturbation Theory.

Ideal Case

Why Spectral Clustering Works?(4)

- What if not the ideal case?
\square We need to introduce Perturbation Theory.
- Perturbation is like noise.

Ideal Case

Nearly ideal Case

Why Spectral Clustering Works?(5)

What if not the ideal case?
\square Perturbation Theory will not be formally discussed here.
\square References will be offered on IVLE.

Why Spectral Clustering Works?(5)

- What if not the ideal case?
\square Perturbation Theory will not be formally discussed here.
\square What you need to know is:
- For ideal case, the between-cluster similarity is 0 .
- The first k eigenvectors of Laplacian matrix L are indicators of clusters.
" For real case, $L^{\prime}=\boldsymbol{L}+\boldsymbol{H}$, where \boldsymbol{H} is the perturbation.
- Perturbation theory tells us the eigenvectors generated from L ' will be very close to the ideal vectors from L, bounded by a small value.

Applications: Social Media

[^0]: href = "www.a.com"

[^1]: Proposition 2 (Number of connected components and the spectrum of L) Let G be an undirected graph with non-negative weights. The multiplicity k of the eigenvalue 0 of L equals the number of connected components A_{1}, \ldots, A_{k} in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_{1}}, \ldots, \mathbb{1}_{A_{k}}$ of those components.

