GRAPH AS LINEAR ALGEBRA

1

Spectral Clustering and Page Rank

INTRODUCTION

-BY HONG HANDE

Facebook Group

Write something on The Beatles's Page ...

Likes The Beatles

7 -

https://www.facebook.com/thebeatles?rf=111113312246958

Flickr group

4

http://www.flickr.com/groups/49246928@N00/pool/with/417646359/#photo_417646359

Math UA-Linear Algebra

Graph construction from web data(1)

Webpage www.x.com

href = "www.y.com" href = "www.z.com"

Webpage www.y.com

href = "www.x.com" href = "www.a.com" href = "www.b.com"

Webpage www.z.com

href = "www.a.com"

Graph construction from web data(2)

eiffel, tower

Web pages as a graph

Cnn.com

Lots of links, lots of images. (1316 tags)

blue: for links (the A tag)
red: for tables (TABLE, TR and TD tags)
green: for the DIV tag
violet: for images (the IMG tag)
yellow: for forms (FORM, INPUT, TEXTAREA, SELECT and OPTION tags)
orange: for linebreaks and blockquotes (BR, P, and BLOCKQUOTE tags)
black: the HTML tag, the root node
gray: all other tags

http://www.aharef.info/2006/05/websites_as_graphs.htm

Internet as a graph

nodes = service providers edges = connections

hierarchical structure

S. Carmi,S. Havlin, S. Kirkpatrick, Y. Shavitt, E. Shir. A model of Internet topology using k-shell decomposition. PNAS 104 (27), pp. 11150-11154, 2007

Emerging structures

- Graph (from web, daily life) present certain structural characteristics
- Group of nodes interacting with each other
 Dense inter-connections
 functional/topical associations

Community

a.k.a. group, subgroup, module, cluster

Community Types

Explicit

The result of conscious human decision

Implicit

Emerging from the interactions & activities of users

Need special methods to be discovered

Defining Communities

- Often communities are defined with respect to a graph, G = (V,E) representing a set of objects (V) and their relations (E).
- Even if such graph is not explicit in the raw data, it is usually possible to construct, e.g. feature vectors distances graph

Communities and graphs

 Given a graph, a community is defined as a set of nodes that are more densely connected to each other than to the rest of the network nodes

Graph cuts

14

 A cut is a partition of the vertices of a graph into two disjoint subsets.

The cut-set of the cut is the set of edges whose end points are in different subsets of the partition.

PAGE RANK

An example of Simplified PageRank

PageRank Calculation: first iteration

An example of Simplified PageRank

PageRank Calculation: second iteration

An example of Simplified PageRank

Convergence after some iterations

Converge to eigenvectors!

- Simplest method for computing one eigenvalueeigenvector pair is *power iteration*, which repeatedly multiplies matrix times initial starting vector
- Assume A has unique eigenvalue of maximum modulus, say λ₁, with corresponding eigenvector v₁
- Then, starting from nonzero vector x₀, iteration scheme

$$x_k = A x_{k-1}$$

converges to multiple of eigenvector v_1 corresponding to dominant eigenvalue λ_1

Convergence of Power iteration

Then

 To see why power iteration converges to dominant eigenvector, express starting vector x_0 as linear combination $X = \alpha_1 V_1 + \cdots + \alpha_n V_n$ n

$$w_{0} = \sum_{i=1}^{k} \alpha_{i} v_{i} \implies A^{k} = \alpha_{i} \lambda_{i}^{k} v_{i} + \dots + \alpha_{n} \lambda_{n}^{k} v_{n}$$
where v_{i} are eigenvectors of A
largest eigen value.

 $\alpha_{i} \lambda_{i}^{k}$ growth much faster

Then

 $w_{0} = \sum_{i=1}^{k} \alpha_{i} v_{i} \implies \beta_{i}^{k} = \alpha_{i} \lambda_{i}^{k} v_{i} + \dots + \alpha_{n} \lambda_{n}^{k} v_{n}$

 $\alpha_{i} \lambda_{i}^{k}$ growth much faster

$$\begin{aligned} x_k &= A x_{k-1} = A^2 x_{k-2} = \dots = A^k x_0 = \\ \sum_{i=1}^n \lambda_i^k \alpha_i v_i &= \lambda_1^k \left(\alpha_1 v_1 + \sum_{i=2}^n (\lambda_i / \lambda_1)^k \alpha_i v_i \right) \end{aligned}$$

• Since $|\lambda_i/\lambda_1| < 1$ for i > 1, successively higher powers go to zero, leaving only component corresponding to v_1

SPECTRAL CLUSTERING

22

23

Two kinds of clusters

non-convex shaped

convex shaped

24

Two kinds of clusters convex shaped, compact → k-means

non-convex shaped

convex shaped

Two kinds of clusters
 convex shaped, compact

 k-means
 non-convex shaped, connected
 spectral clustering

non-convex shaped

Key Idea

- Project the data points into a new space
- Clusters can be trivially detected in the new space

Key Idea

- Project the data points into a new space
- Clusters can be trivially detected in the new space
- Next, we will cover
 - How to find the new space
 - How to represent data points in the space

Adjacency matrix W

 $W = \left(w_{ij} \right) i, j = 1, \dots, n \quad w_{ij} \geq 0$

Degree di of a node i

$$d_i = \sum_{j=1}^n w_{ij}$$

$$\Box \text{ Degree matrix } D$$

Diagonal matrix with the degrees d_1, \ldots, d_n on the diagonal

30

Adjacency matrix W Symmetric
 W = (w_{ij}) i, j = 1, ..., n w_{ij} ≥ 0
 Degree di of a node i
 d_i = ∑ⁿ_{i=1} w_{ij}

Degree matrix D

Diagonal matrix with the degrees d_1, \ldots, d_n on the diagonal

$$W = \begin{pmatrix} 0 & 0.8 & 0.6 & 0 & 0.1 & 0 \\ 0.8 & 0 & 0.8 & 0 & 0 & 0 \\ 0.6 & 0.8 & 0 & 0.2 & 0 & 0 \\ 0 & 0 & 0.2 & 0 & 0.8 & 0.7 \\ 0.1 & 0 & 0 & 0.8 & 0 & 0.8 \\ 0 & 0 & 0 & 0.7 & 0.8 & 0 \end{pmatrix} \quad D = \begin{pmatrix} 1.5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1.6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1.6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1.7 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1.7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1.5 \end{pmatrix}$$

Adjacency matrix W 0,8+0,6+0. $W = (w_{ij}) \, i, j = 1, \dots, n \quad w_{ij} \ge 0$ Degree di of a node i 0.1 0.8 1 0.8 0.8 0.8 -f0,8 0.6 $d_i = \sum_{j=1}^n w_{ij}$ $\Box \text{ Degree matrix } D$ 0.7 0.8 0.2 0,8+0.6+0,2 Diagonal matrix with the degrees d_1, \ldots, d_n on the diagonal $W = \begin{pmatrix} 0 & 0.8 & 0.6 & 0 & 0.1 & 0 \\ 0.8 & 0 & 0.8 & 0 & 0 & 0 \\ 0.6 & 0.8 & 0 & 0.2 & 0 & 0 \\ 0 & 0 & 0.2 & 0 & 0.8 & 0.7 \\ 0.1 & 0 & 0 & 0.8 & 0 & 0.8 \\ 0 & 0 & 0 & 0.7 & 0.8 & 0 \end{pmatrix} \qquad D = \begin{pmatrix} 1.5 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1.6 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1.6 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1.7 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1.7 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1.5 \end{pmatrix}$ 1.5

Graph Laplacian

31

Graph Laplacian

• Graph Laplacian L = D - W

 $D: Degree \ matrix \\ W: Adjacency \ matrix \\ d_i = \sum_{j=1}^n w_{ij}$

- Next, we will see some properties of L, which would be used for spectral clustering
- We will work closely with linear algebra, especially eigenvalues and eigenvectors

Properties of Graph Laplacian (1)

33

D: Degree matrixFor any vector $f \in \mathbb{R}^n$ we have W: Adjacency matrix $f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_{i} - f_{j})^{2}.$ $d_i = \sum_{j=1}^{n} w_{ij} \quad (1)$ $L = D - W \quad (2)$ Wij = o i = j Lis P.S.D beaux fi and fi can be different ftlf always larger $W_{ij} = \square$ i.j Connection We want fi and fj alle similar than O

Properties of Graph Laplacian (1)

34

For any vector $f \in \mathbb{R}^n$ we have

$${}^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{n} w_{ij} (f_i - f_j)^2.$$
 $d_i = \sum_{j=1}^{n} w_{ij}$ (1)
 $L = D - W$ (2)

D: Degree matrix

W: Adjacency matrix

Proof:

 $\begin{aligned} f^{T}Lf &= f^{T}Df - f^{T}Wf & \text{apply Equation 2} \\ &= (f_{1}, f_{2}, ..., f_{n}) \begin{pmatrix} d_{11} & ... & 0 \\ ... & d_{ii} & ... \\ 0 & ... & d_{nn} \end{pmatrix} \begin{pmatrix} f_{1} \\ ... \\ f_{n} \end{pmatrix} - (f_{1}, f_{2}, ..., f_{n}) \begin{pmatrix} w_{11} & ... & w_{1n} \\ ... & w_{ij} & ... \\ w_{n1} & ... & w_{nn} \end{pmatrix} \begin{pmatrix} f_{1} \\ ... \\ f_{n} \end{pmatrix} \\ &= \sum_{i=1}^{n} d_{i}f_{i}^{2} - \sum_{i,j=1}^{n} f_{i}f_{j}w_{ij} \end{aligned}$

Properties of Graph Laplacian (1)

35

D: Degree matrixFor any vector $f \in \mathbb{R}^n$ we have $W: Adjacency \ matrix$ $d_i = \sum_{j=1}^n w_{ij} \quad (1)$ $f^T L f = \frac{1}{2} \sum_{i=1}^{n} w_{ij} (f_i - f_j)^2.$ $L = D - W \quad (2)$ Proof: $f^{T}Lf = f^{T}Df - f^{T}Wf$ apply Equation 2 $= (f_1, f_2, ..., f_n) \begin{pmatrix} d_{11} & ... & 0 \\ ... & d_{ii} & ... \\ 0 & ... & d_{nn} \end{pmatrix} \begin{pmatrix} f_1 \\ ... \\ f_n \end{pmatrix} - (f_1, f_2, ..., f_n) \begin{pmatrix} w_{11} & ... & w_{1n} \\ ... & w_{ij} & ... \\ w_{n1} & ... & w_{nn} \end{pmatrix} \begin{pmatrix} f_1 \\ ... \\ f_n \end{pmatrix}$ $= \sum d_i f_i^2 - \sum f_i f_j w_{ij}$ $= \frac{1}{2} \left(\sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i=1}^{n} f_i f_j w_{ij} + \sum_{j=1}^{n} d_j f_j^2 \right)$

36

D: Degree matrixFor any vector $f \in \mathbb{R}^n$ we have $W: Adjacency \ matrix$ $d_i = \sum_{j=1}^n w_{ij} \quad (1)$ $f^T L f = \frac{1}{2} \sum_{i=1}^{n} w_{ij} (f_i - f_j)^2.$ $L = D - W \quad (2)$ Proof: $f^{T}Lf = f^{T}Df - f^{T}Wf$ apply Equation 2 $= (f_1, f_2, ..., f_n) \begin{pmatrix} d_{11} & ... & 0 \\ ... & d_{ii} & ... \\ 0 & ... & d_{m} \end{pmatrix} \begin{pmatrix} f_1 \\ ... \\ f_n \end{pmatrix} - (f_1, f_2, ..., f_n) \begin{pmatrix} w_{11} & ... & w_{1n} \\ ... & w_{ij} & ... \\ w_{m1} & ... & w_{mn} \end{pmatrix} \begin{pmatrix} f_1 \\ ... \\ f_n \end{pmatrix}$ $= \sum d_i f_i^2 - \sum f_i f_j w_{ij}$ $= \frac{1}{2} \left(\sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i,j=1}^{n} f_i f_j w_{ij} + \sum_{j=1}^{n} d_j f_j^2 \right)$ $= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} f_i^2 - 2 \sum_{i,j=1}^{n} f_i f_j w_{ij} + \sum_{j=1}^{n} \sum_{i=1}^{n} w_{ij} f_j^2 \right)$ apply Equation 1

37

i, j=1

D: Degree matrixFor any vector $f \in \mathbb{R}^n$ we have W: Adjacency matrix $d_i = \sum_{j=1}^n w_{ij} \quad (1)$ $f^T L f = \frac{1}{2} \sum_{i=1}^{n} w_{ij} (f_i - f_j)^2.$ $L = \tilde{D} - W \quad (2)$ Proof: $f^{T}Lf = f^{T}Df - f^{T}Wf$ apply Equation 2 $= (f_1, f_2, ..., f_n) \begin{pmatrix} d_{11} & ... & 0 \\ ... & d_{ii} & ... \\ 0 & ... & d_{m} \end{pmatrix} \begin{pmatrix} f_1 \\ ... \\ f_n \end{pmatrix} - (f_1, f_2, ..., f_n) \begin{pmatrix} w_{11} & ... & w_{1n} \\ ... & w_{ij} & ... \\ w_{m1} & ... & w_{mn} \end{pmatrix} \begin{pmatrix} f_1 \\ ... \\ f_n \end{pmatrix}$ $= \sum d_i f_i^2 - \sum f_i f_j w_{ij}$ $= \frac{1}{2} \left(\sum_{i=1}^{n} d_i f_i^2 - 2 \sum_{i=1}^{n} f_i f_j w_{ij} + \sum_{j=1}^{n} d_j f_j^2 \right)$ $= \frac{1}{2} \left(\sum_{i=1}^{n} \sum_{j=1}^{n} w_{ij} f_i^2 - 2 \sum_{i,j=1}^{n} f_i f_j w_{ij} + \sum_{j=1}^{n} \sum_{i=1}^{n} w_{ij} f_j^2 \right)$ apply Equation 1 $=\frac{1}{2}\sum_{i=1}^{n}w_{ij}\left(f_{i}-f_{j}\right)^{2}$

38

The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector 1

 $D: Degree \ matrix$ $W: Adjacency \ matrix$ $d_i = \sum_{j=1}^n w_{ij} \quad (1)$ $L = D - W \quad (2)$

$$f^{T}Lf = \frac{1}{2} \sum_{i,j=1}^{n} W_{ij} [f_{i} - f_{j}]^{2}$$

if f is all one vector
$$\Rightarrow f^{T}Lf = 0$$

39

The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector 1

 $D: Degree \ matrix$ $W: Adjacency \ matrix$ $d_i = \sum_{j=1}^n w_{ij} \quad (1)$ $L = D - W \quad (2)$

Let λ be an eigenvalue of L, and v be the corresponding eigenvector, then $Lv = \lambda v$.

40

The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector 1

 $D: Degree \ matrix$ $W: Adjacency \ matrix$ $d_i = \sum_{j=1}^n w_{ij} \quad (1)$ $L = D - W \quad (2)$

Let λ be an eigenvalue of L, and v be the corresponding eigenvector, then $Lv = \lambda v$.

Proof:

From Property 1, $\underline{f^T L f} = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2 \ge 0 \forall f$, then suppose $Lv = \lambda v$, we have $v^T L v = v^T \lambda v = \lambda \sum_{i=1}^n v_i^2 \ge 0$. Thus the smallest eigenvalue is 0.

41

The smallest eigenvalue of L is 0, the corresponding eigenvector is the constant one vector 1

 $D: Degree \ matrix$ $W: Adjacency \ matrix$ $d_i = \sum_{j=1}^n w_{ij} \quad (1)$ $L = D - W \quad (2)$

Let λ be an eigenvalue of L, and v be the corresponding eigenvector, then $Lv = \lambda v$.

Proof:

From Property 1, $\underline{f^T L f} = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2 \ge 0 \forall f$, then suppose $Lv = \lambda v$, we have $v^T L v = v^T \lambda v = \lambda \sum_{i=1}^n v_i^2 \ge 0$. Thus the smallest eigenvalue is 0.

$$\underline{L \cdot \mathbb{1}} = (D - W)\mathbb{1} = D\mathbb{1} - W\mathbb{1} = \left(d_i - \sum_{j=1}^n w_{ij}\right)_i = \mathbb{0} = \underline{0 \cdot \mathbb{1}}$$

Thus the corresponding eigenvector is the constant vector.

a connected component of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph

Why Spectral Clustering Works?(2)

- Consider an ideal case
 - Let the three eigenvectors be three columns of a matrix U.
 - Project the rows in U to a 3-dimensional space.

Transform the graph to Laplacian L

- 44
- Transform the graph to Laplacian L
- Study the properties of L, basically the eigenvalues and eigenvectors

- 45
- Transform the graph to Laplacian L
- Study the properties of L, basically the eigenvalues and eigenvectors
- Finally, we can see the relationship between the graph and the eigenvalues!

Applications: Social Media

NUS - Extreme - Tsinghua

http://next.comp.nus.edu.sg

Smallest eigenvectors means...

Smallest Largest eigenvectors separate data to two distance class, so singlest eigenvectors will separate data to similar groups. Consider if you want to test a vaccine or a marketing policy....

This is my paper! https://arxiv.org/pdf/2211.15241.pdf

Example(1)

66

- Now let's go through an example.
- □ *n* = 6, *k*=2

Example(2)

Step 1: Weighted adjacency matrix *W* and degree matrix *D*

	X ₁	X ₂	X ₃	\times_4	X ₅	× ₆
X ₁	0	0.8	0.6	0	0.1	0
X ₂	0.8	0	0.8	0	0	0
X ₃	0.6	0.8	0	0.2	0	0
\times_4	0	0	0.2	0	0.8	0.7
×5	0.1	0	0	0.8	0	0.8
× ₆	0	0	0	0.7	0.8	0

Adjacency Matrix W

	X ₁	X ₂	X ₃	\times_4	×5	X ₆
X ₁	1.5	0	0	0	0	0
X ₂	0	1.6	0	0	0	0
X ₃	0	0	1.6	0	0	0
\times_4	0	0	0	1.7	0	0
×5	0	0	0	0	1.7	0
× ₆	0	0	0	0	0	1.5

Degree Matrix **D**

Example(3)

68

Step 2: Laplacian matrix *L*=*D*-*W*

	X ₁	X ₂	X ₃	\times_4	× ₅	× ₆
X ₁	1.5	-0.8	-0.6	0	-0.1	0
X ₂	-0.8	1.6	-0.8	0	0	0
X ₃	-0.6	-0.8	1.6	-0.2	0	0
\times_4	0	0	-0.2	1.7	-0.8	-0.7
X ₅	-0.1	0	0	-0.8	1.7	-0.8
× ₆	0	0	0	-0.7	-0.8	1.5

Laplacian Matrix L

Example(4)

X₃

 X_{4}

X₁

...

...

...

...

...

...

X₂

 \times_{6}

 X_5

Example(5)

X

0

0

-0.2

1.7

-0.8

-0.7

0

0

 X_5

-0.1

0

0

-0.8

1.7

-0.8

X₆

0

0

0

-0.7

-0.8

1.5

Example(6)

Step 4: Embedding

□ U= 🏼	-0.4082	0.4084
	-0.4082	0.4418
	-0.4082	0.3713
	-0.4082	-0.3713
	-0.4082	-0.4050
· · · ·	-0.4082	-0.4452

Example(6)

Step 4	1: Embe	edding	
□ U=	-0.4082	0.4084	
	-0.4082	0.4418	
	-0.4082	0.3713	
	-0.4082	-0.3713	
	-0.4082	-0.4050	
	-0.4082	-0.4452	
		2 2 2	

Each row represents a data point

Example(7)

Example(8)

74

Step 5: Clustering K-means clustering

Example(8)

75

Step 5: Clustering

a connected component of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k, then there are k linear independent eigenvectors corresponding to v

a connected component of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k, then there are k linear independent eigenvectors corresponding to v

indicator vector: $\mathbb{1}_A = (f_1, \dots, f_n)' \in \mathbb{R}^n \quad f_i \in \{0, 1\}$

a connected component of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k, then there are k linear independent eigenvectors corresponding to v

indicator vector: $\mathbb{1}_A = (f_1, \dots, f_n)' \in \mathbb{R}^n \quad f_i \in \{0, 1\}$

Proposition 2 (Number of connected components and the spectrum of *L*) Let G be an undirected graph with non-negative weights. The multiplicity k of the eigenvalue 0 of *L* equals the number of connected components A_1, \ldots, A_k in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k}$ of those components.

a connected component of an undirected graph is a subgraph in which any two vertices are connected to each other by paths, and which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k, then there are k linear independent eigenvectors corresponding to v

indicator vector:
$$1_A = (f_1, \dots, f_n)' \in \mathbb{R}^n$$
 $f_i \in \{0, 1\}$

Proposition 2 (Number of connected components and the spectrum of *L*) Let G be an undirected graph with non-negative weights. The multiplicity k of the eigenvalue 0 of *L* equals the number of connected components A_1, \ldots, A_k in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_1}, \ldots, \mathbb{1}_{A_k}$ of those components.

 $D: Degree \ matrix$ $W: Adjacency \ matrix$ $d_i = \sum_{j=1}^n w_{ij}$ L = D - W $Lv = \lambda v.$

53

When k = 1: 1 connected component Suppose $L \cdot f = 0 \cdot f$. Then we have $f^T L f = f^T \cdot 0 \cdot f = 0.$ $D: Degree \ matrix$ $W: Adjacency \ matrix$ $d_i = \sum_{j=1}^n w_{ij}$ L = D - W $Lv = \lambda v.$

54

When k = 1: 1 connected component Suppose $L \cdot f = 0 \cdot f$. Then we have $f^T L f = f^T \cdot 0 \cdot f = 0.$ $f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2$

$$D: Degree \ matrix$$
$$W: Adjacency \ matrix$$
$$d_i = \sum_{j=1}^n w_{ij}$$
$$L = D - W$$
$$Lv = \lambda v.$$

55

When k = 1: 1 connected component Suppose $L \cdot f = 0 \cdot f$. Then we have $f^T L f = f^T \cdot 0 \cdot f = 0.$ $f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2$

$$D: Degree \ matrix$$
$$W: Adjacency \ matrix$$
$$d_i = \sum_{j=1}^n w_{ij}$$
$$L = D - W$$
$$Lv = \lambda v.$$

56

When k = 1: 1 connected component Suppose $L \cdot f = 0 \cdot f$. Then we have $f^T L f = f^T \cdot 0 \cdot f = 0.$ $f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2$

$$D: Degree \ matrix$$
$$W: Adjacency \ matrix$$
$$d_i = \sum_{j=1}^n w_{ij}$$
$$L = D - W$$
$$Lv = \lambda v.$$

57

When k = 1: 1 connected component Suppose $L \cdot f = 0 \cdot f$. Then we have $f^T L f = f^T \cdot 0 \cdot f = 0.$ $f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2$ $f = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ $D : Degree matrix \\ W : Adjacency matrix \\ d_i = \sum_{j=1}^n w_{ij} \\ L = D - W \\ Lv = \lambda v.$

58

When k = 1: 1 connected component Suppose $L \cdot f = 0 \cdot f$. Then we have $f^T L f = f^T \cdot 0 \cdot f = 0.$ $f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2$ $f = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ $D : Degree matrix \\ W : Adjacency matrix \\ d_i = \sum_{j=1}^n w_{ij} \\ L = D - W \\ Lv = \lambda v.$

When k > 1: several connected components

We assume that the vertices are ordered according to the connected components they belong to. In this case, the adjacency matrix W has a block diagonal form, and the same is true for the matrix L:

$$L = \begin{bmatrix} L_1 & 0 \\ 0 & L_2 \\ 0 & L_3 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}$$

59

When k = 1: 1 connected component Suppose $L \cdot f = 0 \cdot f$. Then we have $f^T L f = f^T \cdot 0 \cdot f = 0.$ $f^T L f = \frac{1}{2} \sum_{i,j=1}^n w_{ij} (f_i - f_j)^2$ $f = \begin{pmatrix} 1 \\ \vdots \\ 1 \end{pmatrix}$ $D : Degree matrix \\ W : Adjacency matrix \\ d_i = \sum_{j=1}^n w_{ij} \\ L = D - W \\ Lv = \lambda v.$

When k > 1: several connected components

We assume that the vertices are ordered according to the connected components they belong to. In this case, the adjacency matrix W has a block diagonal form, and the same is true for the matrix L:

Eigenvalues of L is the union of the eigenvalues of L_i , while the eigenvectors is given by v_i filled with 0s.

- □ Input: Graph $S \in \mathbb{R}^{n \times n}$, number k of clusters to form
 - Compute adjacency matrix W and degree matrix D
 - **Laplacian** L = D W

- □ Input: Graph $S \in \mathbb{R}^{n \times n}$, number k of clusters to form
 - Compute adjacency matrix W and degree matrix D
 - **Laplacian** L = D W
 - **Compute the first** k eigenvectors u_1, \ldots, u_k of L
 - Let $U \in \mathbb{R}^{N \times k}$ contain the vectors u_1, \dots, u_k as columns

- Input: Graph $S \in \mathbb{R}^{n \times n}$, number k of clusters to form
 - Compute adjacency matrix W and degree matrix D
 - Laplacian L = D W
 - Compute the first k eigenvectors u_1, \dots, u_k of L
 - Let $U \in \mathbb{R}^{N \times k}$ contain the vectors u_1, \dots, u_k as columns

New space found!

- □ Input: Graph $S \in \mathbb{R}^{n \times n}$, number k of clusters to form
 - Compute adjacency matrix W and degree matrix D
 - **Laplacian** L = D W
 - Compute the first k eigenvectors u_1, \dots, u_k of L
 - Let $U \in \mathbb{R}^{N \times k}$ contain the vectors u_1, \dots, u_k as columns
 - Let $y_i \in \mathbb{R}^k$ be the vector corresponding to the *i*-th row of U
 - Cluster the points $(y_i)_{i=1,...,N}$ into k clusters using k-means

- □ Input: Graph $S \in \mathbb{R}^{n \times n}$, number k of clusters to form
 - Compute adjacency matrix W and degree matrix D
 - Laplacian L = D W
 - **Compute the first** k eigenvectors u_1, \ldots, u_k of L
 - Let $U \in \mathbb{R}^{N \times k}$ contain the vectors u_1, \dots, u_k as columns
 - Let $y_i \in \mathbb{R}^k$ be the vector corresponding to the *i*-th row of U
 - Cluster the points $(y_i)_{i=1,...,N}$ into k clusters using k-means

Representing data in the new space!

- □ Input: Graph $S \in \mathbb{R}^{n \times n}$, number k of clusters to form
 - Compute adjacency matrix W and degree matrix D
 - **Laplacian** L = D W
 - Compute the first k eigenvectors u_1, \dots, u_k of L
 - Let $U \in \mathbb{R}^{N \times k}$ contain the vectors u_1, \dots, u_k as columns
 - Let $y_i \in \mathbb{R}^k$ be the vector corresponding to the *i*-th row of U
 - Cluster the points $(y_i)_{i=1,...,N}$ into k clusters using k-means

Time Complexity: O(n³)

Why Spectral Clustering Works?(1)

Consider an ideal case

- There are no similarities between any nodes in different connected components
- This conforms to Proposition 2:

Proposition 2 (Number of connected components and the spectrum of *L*) Let G be an undirected graph with non-negative weights. The multiplicity k of the eigenvalue 0 of *L* equals the number of connected components $A_1, ..., A_k$ in the graph. The eigenspace of eigenvalue 0 is spanned by the indicator vectors $\mathbb{1}_{A_1}, ..., \mathbb{1}_{A_k}$ of those components.

Why Spectral Clustering Works?(1)

Consider an ideal case

- There are no similarities between any nodes in different connected components
- Compute the weighted adjacency matrix *W* and degree matrix *D*.
- L = D W; compute L's 3 eigenvectors of eigenvalue
 0.

Why Spectral Clustering Works?(1)

Consider an ideal case

- There are no similarities between any nodes in different connected components
- Compute the weighted adjacency matrix *W* and degree matrix *D*.
- L = D W; compute L's 3 eigenvectors of eigenvalue
 0.

First three eigenvectors

Why Spectral Clustering Works?(2)

- Consider an ideal case
 - Let the three eigenvectors be three columns of matrix U.

First three eigenvectors

Why Spectral Clustering Works?(2)

- Consider an ideal case
 - Let the three eigenvectors be three columns of a matrix U.
 - Project the rows in U to a 3-dimensional space.

Why Spectral Clustering Works?(3)

Consider an ideal case

- Now we use K-Means in this space, we can have very good results.
- # of 0 eigenvalues = # of connected components

Why Spectral Clustering Works?(4)

What if not the ideal case?
 We need to introduce Perturbation Theory.

Why Spectral Clustering Works?(4)

- What if not the ideal case?
 - We need to introduce Perturbation Theory.
 - Perturbation is like noise.

Nearly ideal Case

Why Spectral Clustering Works?(5)

- What if not the ideal case?
 - Perturbation Theory will not be formally discussed here.
 - References will be offered on IVLE.

Why Spectral Clustering Works?(5)

- What if not the ideal case?
 - Perturbation Theory will not be formally discussed here.
 - What you need to know is:
 - For ideal case, the between-cluster similarity is 0.
 - The first k eigenvectors of Laplacian matrix L are indicators of clusters.
 - For real case, L' = L + H, where H is the perturbation.
 - Perturbation theory tells us the eigenvectors generated from *L*' will be very close to the ideal vectors from *L*, bounded by a small value.

Applications: Social Media

NUS - Extreme - Tsinghua

http://next.comp.nus.edu.sg