
 
GRAPH AS LINEAR ALGEBRA

Spectral Clustering and Page Rank
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Facebook Group

https://www.facebook.com/thebeatles?rf=111113312246958
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Flickr group

http://www.flickr.com/groups/49246928@N00/pool/with/417646359/#photo_417646359
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Math UA-Linear Algebra

Sub-communityWhole class  as a 
community
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Graph construction from web data(1) 

Webpage www.x.com 
 href = “www.y.com” 
 href = “www.z.com”  

x

zy

ba

Webpage www.y.com 
 href = “www.x.com” 
 href = “www.a.com” 
 href = “www.b.com” 

Webpage www.z.com 
 href = “www.a.com”
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Graph construction from web data(2) 
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Web pages as a graph

Cnn.com 

Lots of links, lots of images. (1316 tags) 

http://www.aharef.info/2006/05/websites_as_graphs.htm 
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Internet as a graph

nodes = service providers  
edges = connections  

hierarchical structure 

S. Carmi,S. Havlin, S. Kirkpatrick, Y. 
Shavitt, E. Shir. A model of Internet 
topology using k-shell 
decomposition. PNAS 104 (27), pp. 
11150-11154, 2007 
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Emerging structures

□ Graph (from web, daily life) present certain 
structural characteristics 

□ Group of nodes interacting with each other  
 Dense inter-connections  
  functional/topical associations 
 

Community
a.k.a. group, subgroup, module, cluster
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Community Types

□ Explicit 
 The result of conscious human decision 

□ Implicit 
 Emerging from the interactions & activities of users 
 Need special methods to be discovered
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Defining Communities

□ Often communities are defined with respect to 
a graph, G = (V,E) representing a set of objects 
(V) and their relations (E). 

□ Even if such graph is not explicit in the raw 
data, it is usually possible to construct, e.g. 
feature  vectors distances   graph
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Communities and graphs 

Internal edge

External edge

□ Given a graph, a community is defined as a set of nodes 
that are more densely connected to each other than to 
the rest of the network nodes
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Graph cuts 

□ A cut is a partition of the vertices of a graph into two 
disjoint subsets.  

□ The cut-set of the cut is the set of edges whose end 
points are in different subsets of the partition.
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PAGE RANK
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An example of Simplified PageRank

PageRank Calculation: first iteration



An example of Simplified PageRank

PageRank Calculation: second iteration



An example of Simplified PageRank

Convergence after some iterations
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Converge to eigenvectors!



Convergence of Power iteration



SPECTRAL 
CLUSTERING
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Motivation
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Motivation

□ Two kinds of clusters

convex shaped non-convex shaped
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Motivation

□ Two kinds of clusters 
 convex shaped, compact       

convex shaped non-convex shaped

k-means
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Motivation

□ Two kinds of clusters 
 convex shaped, compact        
 non-convex shaped, connected

convex shaped non-convex shaped

k-means

spectral clustering
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Key Idea

□ Project the data points into a new space 
□ Clusters can be trivially detected in the new 

space
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Key Idea

□ Project the data points into a new space 
□ Clusters can be trivially detected in the new 

space 

□ Next, we will cover 
 How to find the new space 
 How to represent data points in the space
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Matrix Representations of Graphs
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Matrix Representations of Graphs

□ Adjacency matrix W 

□ Degree di of a node i 

□ Degree matrix D
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Matrix Representations of Graphs

□ Adjacency matrix W 

□ Degree di of a node i 

□ Degree matrix D
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Matrix Representations of Graphs

□ Adjacency matrix W 

□ Degree di of a node i 

□ Degree matrix D
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Graph Laplacian

□ Graph Laplacian
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Graph Laplacian

□ Graph Laplacian 

□ Next, we will see some properties of L, which 
would be used for spectral clustering 

□ We will work closely with linear algebra, 
especially eigenvalues and eigenvectors
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Properties of Graph Laplacian (1)

(1)

(2)
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Properties of Graph Laplacian (1)

(1)

(2)

apply Equation 2
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apply Equation 2
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Properties of Graph Laplacian (1)

(1)

(2)

apply Equation 1

apply Equation 2
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Properties of Graph Laplacian (1)

(1)

(2)

apply Equation 1

apply Equation 2
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Proof:



Properties of Graph Laplacian (2)

The smallest eigenvalue of L is 0, the 
corresponding eigenvector is the constant 
one vector     .

(1)

(2)
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Properties of Graph Laplacian (2)

The smallest eigenvalue of L is 0, the 
corresponding eigenvector is the constant 
one vector     .

(1)

(2)
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Properties of Graph Laplacian (2)

The smallest eigenvalue of L is 0, the 
corresponding eigenvector is the constant 
one vector     .

(1)

(2)
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Properties of Graph Laplacian (2)

The smallest eigenvalue of L is 0, the 
corresponding eigenvector is the constant 
one vector     .

(1)

(2)
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Proof:



We Have Done So Many Works…
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Number of Connected Components & Eigenvalues of L

a connected component of an undirected graph is a subgraph in 
which any two vertices are connected to each other by paths, and 
which is connected to no additional vertices in the supergraph
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Why Spectral Clustering Works?(2)

□ Consider an ideal case 
 Let the three eigenvectors be three columns of a 

matrix U. 
 Project the rows in U to a 3-dimensional space.

U=
1
⋮
1

1
⋮
1

80



We Have Done So Many Works…

□ Transform the graph to Laplacian L
43



We Have Done So Many Works…

□ Transform the graph to Laplacian L 

□ Study the properties of L, basically the 
eigenvalues and eigenvectors
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We Have Done So Many Works…

□ Transform the graph to Laplacian L 

□ Study the properties of L, basically the 
eigenvalues and eigenvectors 

□ Finally, we can see the relationship between 
the graph and the eigenvalues!
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Applications: Social Media
86

http://next.comp.nus.edu.sg

http://next.comp.nus.edu.sg/
http://next.comp.nus.edu.sg/


Smallest eigenvectors means…

46

Largest eigenvectors separate data to two distance class, so smallest 
eigenvectors will separate data to similar groups.  
Consider if you want to test a vaccine or a marketing policy….

This is my paper! https://arxiv.org/pdf/2211.15241.pdf



Example(1)

□ Now let’s go through an example. 
□ n = 6, k=2
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Example(2)

□ Step 1: Weighted adjacency matrix W and 
degree matrix D

Adjacency Matrix W Degree Matrix D

0 0 0

00

00

0

0 0

0

0

0

0

0 0

0
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Example(3)

□ Step 2: Laplacian matrix 
 L=D-W

Laplacian Matrix L
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Example(4)

□ Step 3: Eigen-decomposition 
 Eigenvalues =  

 Eigenvectors=

69

Laplacian Matrix L



Example(5)

□ Step 3: Eigen-decomposition 
 Eigenvalues =  

 Eigenvectors=

U
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Example(6)

□ Step 4: Embedding 
 U=
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Example(6)

□ Step 4: Embedding 
 U=

Each row represents a data point
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Example(7)

□ Step 4: Embedding 
 U= 

 Map it to a two-dimensional space

0

0.25

0.5

-0.25

-0.5

0 0.25 0.5-0.25-0.5

73



Example(8)

□ Step 5: Clustering 
 K-means clustering

0

0.25

0.5

-0.25

-0.5

0 0.25 0.5-0.25-0.5

0

0.25

0.5

-0.25

-0.5

0 0.25 0.5-0.25-0.5

Cluster A

Cluster B
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Example(8)

□ Step 5: Clustering 
 K-means clustering

0

0.25

0.5

-0.25

-0.5

0 0.25 0.5-0.25-0.5

0

0.25

0.5

-0.25

-0.5

0 0.25 0.5-0.25-0.5

Cluster A

Cluster B
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a connected component of an undirected graph is a subgraph in 
which any two vertices are connected to each other by paths, and 
which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k, then there are k linear 
independent eigenvectors corresponding to v

Number of Connected Components & Eigenvalues of L
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indicator vector:

Number of Connected Components & Eigenvalues of L

a connected component of an undirected graph is a subgraph in 
which any two vertices are connected to each other by paths, and 
which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k, then there are k linear 
independent eigenvectors corresponding to v
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indicator vector:

Number of Connected Components & Eigenvalues of L

a connected component of an undirected graph is a subgraph in 
which any two vertices are connected to each other by paths, and 
which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k, then there are k linear 
independent eigenvectors corresponding to v
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indicator vector:

Number of Connected Components & Eigenvalues of L

a connected component of an undirected graph is a subgraph in 
which any two vertices are connected to each other by paths, and 
which is connected to no additional vertices in the supergraph

If an eigenvalue v has multiplicity k, then there are k linear 
independent eigenvectors corresponding to v

eigenvectors corresponding 
to eigenvalue 0

1
⋮
1

1
⋮
1
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Proof of Proposition 2
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Proof of Proposition 2

1 connected component
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Proof of Proposition 2

1 connected component
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Proof of Proposition 2

1 connected component

i
j
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Proof of Proposition 2

1 connected component

i
j

n
m
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Proof of Proposition 2

! =
1
⋮
1

1 connected component

i
j

n
m
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Proof of Proposition 2

several connected components

1
⋮
1

1
⋮
1

1 connected component

i
j

n
m

! =
1
⋮
1
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Proof of Proposition 2

several connected components

1
⋮
1

1
⋮
1

1 connected component

i
j

n
m

! =
1
⋮
1
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Spectral Clustering Algorithm

□ Input: Graph              , number k of clusters to form 
 Compute adjacency matrix W  and degree matrix D 
 Laplacian L = D – W
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Spectral Clustering Algorithm

□ Input: Graph              , number k of clusters to form 
 Compute adjacency matrix W and degree matrix D 
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 Compute the first k eigenvectors               of L 
 Let                 contain the vectors                as columns
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Spectral Clustering Algorithm

□ Input: Graph              , number k of clusters to form 
 Compute adjacency matrix W and degree matrix D 
 Laplacian L = D – W 
 Compute the first k eigenvectors               of L 
 Let                 contain the vectors                as columns
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New space found!



Spectral Clustering Algorithm

□ Input: Graph              , number k of clusters to form 
 Compute adjacency matrix W and degree matrix D 
 Laplacian L = D – W 
 Compute the first k eigenvectors               of L 
 Let                 contain the vectors                as columns 
 Let               be the vector corresponding to the i-th row of U 
 Cluster the points                     into k clusters using k-means 
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Spectral Clustering Algorithm

□ Input: Graph              , number k of clusters to form 
 Compute adjacency matrix W and degree matrix D 
 Laplacian L = D – W 
 Compute the first k eigenvectors               of L 
 Let                 contain the vectors                as columns 
 Let               be the vector corresponding to the i-th row of U 
 Cluster the points                     into k clusters using k-means 
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Representing data in the new space!



Spectral Clustering Algorithm

□ Input: Graph              , number k of clusters to form 
 Compute adjacency matrix W and degree matrix D 
 Laplacian L = D – W 
 Compute the first k eigenvectors               of L 
 Let                 contain the vectors                as columns 
 Let               be the vector corresponding to the i-th row of U 
 Cluster the points                     into k clusters using k-means 

Time Complexity: O(n3)
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Why Spectral Clustering Works?(1)

□ Consider an ideal case 
 There are no similarities between any nodes in 

different connected components 
 This conforms to Proposition 2:
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Why Spectral Clustering Works?(1)

□ Consider an ideal case 
 There are no similarities between any nodes in 

different connected components 
 Compute the weighted adjacency matrix W and degree 

matrix D. 
 L = D - W; compute L’s 3 eigenvectors of eigenvalue 

0.
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Why Spectral Clustering Works?(1)

1
⋮
1

1
⋮
1
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□ Consider an ideal case 
 There are no similarities between any nodes in 

different connected components 
 Compute the weighted adjacency matrix W and 

degree matrix D. 
 L = D - W; compute L’s 3 eigenvectors of eigenvalue 

0.



Why Spectral Clustering Works?(2)

□ Consider an ideal case 
 Let the three eigenvectors be three columns of  

matrix U.

U=
1
⋮
1

1
⋮
1

1
⋮
1

1
⋮
1
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Why Spectral Clustering Works?(2)

□ Consider an ideal case 
 Let the three eigenvectors be three columns of a 

matrix U. 
 Project the rows in U to a 3-dimensional space.

U=
1
⋮
1

1
⋮
1
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Why Spectral Clustering Works?(3)

□ Consider an ideal case 
 Now we use K-Means in this space, we can have 

very good results. 
 # of 0 eigenvalues = # of connected components
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Why Spectral Clustering Works?(4)

□ What if not the ideal case? 
 We need to introduce Perturbation Theory.

Ideal Case
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Why Spectral Clustering Works?(4)

□ What if not the ideal case? 
 We need to introduce Perturbation Theory. 
■ Perturbation is like noise.

Ideal Case Nearly ideal Case

Perturbation
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Why Spectral Clustering Works?(5)

□ What if not the ideal case? 
 Perturbation Theory will not be formally discussed 

here. 
 References will be offered on IVLE.
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Why Spectral Clustering Works?(5)

□ What if not the ideal case? 
 Perturbation Theory will not be formally discussed 

here. 
 What you need to know is: 
■ For ideal case, the between-cluster similarity is 0. 
■ The first k eigenvectors of Laplacian matrix L are 

indicators of clusters. 
■ For real case, L’ = L + H, where H is the perturbation. 
■ Perturbation theory tells us the eigenvectors generated 

from L’ will be very close to the ideal vectors from L, 
bounded by a small value.
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Applications: Social Media
86

http://next.comp.nus.edu.sg

http://next.comp.nus.edu.sg/
http://next.comp.nus.edu.sg/

