
Dimensionality Reduction
Using linear algebra



Motivation

• Clustering

• One way to summarize a complex real-valued data point with a single 

categorical variable


• Dimensionality reduction

• Another way to simplify complex high-dimensional data

• Summarize data with a lower dimensional real valued vector



Motivation

• Clustering

• One way to summarize a complex real-valued data point with a single 

categorical variable


• Dimensionality reduction

• Another way to simplify complex high-dimensional data

• Summarize data with a lower dimentional real valued vector

• Given data points in d dimensions

• Convert them to data points in r<d dimensions

• With minimal loss of information



Data Compression
(in

ch
es

)

(cm)

Reduce data from 

2D to 1D

Andrew Ng



Data Compression

Reduce data from 

2D to 1D

(in
ch

es
)

(cm)

Andrew Ng



Data Compression
Reduce data from 3D to 2D

Andrew Ng



Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector                   )

onto which to project the data so as to minimize the projection error.
Reduce from n-dimension to k-dimension: Find    vectors 

onto which to project the data, so as to minimize the projection error.

Andrew Ng





Covariance
• Variance and Covariance:

• Measure of the “spread” of a set of points around their center of mass(mean)


• Variance:

• Measure of the deviation from the mean for points in one dimension


• Covariance:

• Measure of how much each of the dimensions vary from the mean with 

respect to each other

• Covariance is measured between two dimensions 

• Covariance sees if there is a relation between two dimensions 

• Covariance between one dimension is the variance



Positive: Both dimensions increase or decrease together Negative: While one increase the other decrease



Covariance 

• Used to find relationships between dimensions in high dimensional 
data sets

The Sample mean



Eigenvector and Eigenvalue
Ax = λx

A: Square Matirx

λ: Eigenvector or characteristic vector

X: Eigenvalue or characteristic value

• The zero vector can not be an eigenvector

• The value zero can be eigenvalue 



Eigenvector and Eigenvalue
Ax = λx

A: Square Matirx

λ: Eigenvector or characteristic vector

X: Eigenvalue or characteristic value

Example



Eigenvector and Eigenvalue
Ax - λx = 0

(A – λI)x = 0

B = A – λI

Bx = 0

x = B-10 = 0

If we define a new matrix B: 

If B has an inverse: BUT! an eigenvector 
cannot be zero!!

x will be an eigenvector of A if and only if  B does 
not have an inverse, or equivalently det(B)=0 :

det(A – λI) = 0

Ax = λx



Example 1: Find the eigenvalues of


       


two eigenvalues: −1, − 2  

Note: The roots of the characteristic equation can be repeated. That is, λ1 = λ2 =…= λk. If 

that happens, the eigenvalue is said to be of multiplicity k.

Example 2: Find the eigenvalues of


	 	 	 	 	              λ = 2 is an eigenvector of multiplicity 3.
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Eigenvector and Eigenvalue



Principal Component Analysis

Input:

Summarize a D dimensional vector X with K dimensional 
feature vector h(x)

Set of basis vectors:



Principal Component Analysis

Basis vectors are orthonormal

New data representation h(x)



Principal Component Analysis

New data representation h(x)

Empirical mean of the data











Original Image

• Divide the original 372x492 image into patches:

• Each patch is an instance that contains 12x12 pixels on a grid


• View each as a 144-D vector

Application: Image compression



PCA compression: 144D  60D



PCA compression: 144D  16D



16 most important eigenvectors



PCA compression: 144D ) 6D
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6 most important eigenvectors



PCA compression: 144D  3D
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PCA compression: 144D  1D



60 most important eigenvectors

Looks like the discrete cosine bases of JPG!...



dictionary learning



2D Discrete Cosine Basis

http://en.wikipedia.org/wiki/Discrete_cosine_transform



Dimensionality reduction

• PCA (Principal Component Analysis): 

• Find projection that maximize the variance


• ICA (Independent Component Analysis):

• Very similar to PCA except that it assumes non-Guassian features


• Multidimensional Scaling: 

• Find projection that best preserves inter-point distances


• LDA(Linear Discriminant Analysis): 

• Maximizing the component axes for class-separation


• …

• …



Netflix Competition 



Latent Factors as Low rank matrix 



Math behind Netflix 



Another application

• Math behind:

• Change smallest number 

of pixels (people), make 
the matrix low rank 
(background)


