Dimensionality Reduction

Using linear algebra

Motivation

- Clustering
- One way to summarize a complex real-valued data point with a single categorical variable
- Dimensionality reduction
- Another way to simplify complex high-dimensional data
- Summarize data with a lower dimensional real valued vector

Motivation

- Clustering
- One way to summarize a complex real-valued data point with a single categorical variable
- Dimensionality reduction
- Another way to simplify complex high-dimensional data
- Summarize data with a lower dimentional real valued vector
- Given data points in d dimensions
- Convert them to data points in $r<d$ dimensions
- With minimal loss of information

Data Compression

Reduce data from
 2D to 1D

Data Compression

Data Compression

Reduce data from 3D to 2D

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector onto which to project the data so as to minimize the projection error.
Reduce from n-dimension to k-dimension: Find kectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

Principal Component Analysis

Goal: Find r-dim projection that best preserves variance

1. Compute mean vector μ and covariance matrix Σ of original points
2. Compute eigenvectors and eigenvalues of Σ
3. Select top r eigenvectors
4. Project points onto subspace spanned by them:

$$
y=A(x-\mu)
$$

where y is the new point, x is the old one, and the rows of A are the eigenvectors

Covariance

- Variance and Covariance:
- Measure of the "spread" of a set of points around their center of mass(mean)
- Variance:
- Measure of the deviation from the mean for points in one dimension
- Covariance:
- Measure of how much each of the dimensions vary from the mean with respect to each other
- Covariance is measured between two dimensions
- Covariance sees if there is a relation between two dimensions
- Covariance between one dimension is the variance

positive covariance

Positive: Both dimensions increase or decrease together

negative covariance

Negative: While one increase the other decrease

Covariance

- Used to find relationships between dimensions in high dimensional data sets

$$
q_{j k}=\frac{1}{N} \sum_{i=1}^{N}\left(X_{i j}-E\left(X_{j}\right)\right)\left(X_{i k}-E\left(X_{k}\right)\right)
$$

The Sample mean

Eigenvector and Eigenvalue

$A x=\lambda x$

A: Square Matirx

λ : Eigenvector or characteristic vector

X: Eigenvalue or characteristic value

- The zero vector can not be an eigenvector
- The value zero can be eigenvalue

Eigenvector and Eigenvalue

$$
A x=\lambda x
$$

A: Square Matirx

λ : Eigenvector or characteristic vector
X : Eigenvalue or characteristic value

Example Show $x=\left[\begin{array}{l}2 \\ 1\end{array}\right]$ is an eigenvector for $A=\left[\begin{array}{ll}2 & -4 \\ 3 & -6\end{array}\right]$ Solution : $A x=\left[\begin{array}{ll}2 & -4 \\ 3 & -6\end{array}\right]\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
But for $\lambda=0, \quad \lambda x=0\left[\begin{array}{l}2 \\ 1\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
Thus, x is an eigenvector of A, and $\lambda=0$ is an eigenvalue.

Eigenvector and Eigenvalue

$$
A x=\lambda x
$$

$$
\begin{aligned}
& A x-\lambda x=0 \\
& (A-\lambda I) x=0
\end{aligned}
$$

If we define a new matrix B :

$$
B=A-\lambda I
$$

$$
B x=0
$$

If B has an inverse:

$$
\longrightarrow \quad x=B-10=0
$$

BUT! an eigenvector cannot be zero!!

x will be an eigenvector of A if and only if B does not have an inverse, or equivalently $\operatorname{det}(B)=0$:

$$
\operatorname{det}(A-\lambda I)=0
$$

Eigenvector and Eigenvalue

Example 1: Find the eigenvalues of

$$
\begin{aligned}
|\lambda I-A| & =\left|\begin{array}{cc}
\lambda-2 & 12 \\
-1 & \lambda+5
\end{array}\right|=(\lambda-2)(\lambda+5)+12 \\
& =\lambda^{2}+3 \lambda+2=(\lambda+1)(\lambda+2)
\end{aligned}
$$

two eigenvalues: -1, - 2
Note: The roots of the characteristic equation can be repeated. That is, $\lambda_{1}=\lambda_{2}=\ldots=\lambda_{\mathrm{k}}$. If that happens, the eigenvalue is said to be of multiplicity k.
Example 2: Find the eigenvalues of

$$
A=\left[\begin{array}{lll}
2 & 1 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]
$$

$$
|\lambda I-A|=\left|\begin{array}{ccc}
\lambda-2 & -1 & 0 \\
0 & \lambda-2 & 0 \\
0 & 0 & \lambda-2
\end{array}\right|=(\lambda-2)^{3}=0
$$

$\lambda=2$ is an eigenvector of multiplicity 3.

Principal Component Analysis

Input:

$$
\mathbf{x} \in \mathbb{R}^{D}: \mathcal{D}=\left\{\mathbf{x}_{1}, \ldots, \mathbf{x}_{N}\right\}
$$

Set of basis vectors:

$$
\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}
$$

Summarize a D dimensional vector X with K dimensional feature vector $h(x)$

$$
h(\mathbf{x})=\left[\begin{array}{c}
\mathbf{u}_{1} \cdot \mathbf{x} \\
\mathbf{u}_{2} \cdot \mathbf{x} \\
\cdots \\
\mathbf{u}_{K} \cdot \mathbf{x}
\end{array}\right]
$$

Principal Component Analysis

$$
\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}\right]
$$

Basis vectors are orthonormal

$$
\begin{gathered}
\mathbf{u}_{i}^{T} \mathbf{u}_{j}=0 \\
\left\|\mathbf{u}_{j}\right\|=1
\end{gathered}
$$

New data representation $h(x)$

$$
\begin{aligned}
& z_{j}=\mathbf{u}_{j} \cdot \mathbf{x} \\
& h(\mathbf{x})=\left[z_{1}, \ldots, z_{K}\right]^{T}
\end{aligned}
$$

Principal Component Analysis

$$
\mathbf{U}=\left[\mathbf{u}_{1}, \ldots, \mathbf{u}_{K}\right]
$$

New data representation $h(x)$

$$
\begin{aligned}
& h(\mathbf{x})=\mathbf{U}^{T} \mathbf{x} \\
& h(\mathbf{x})=\mathbf{U}^{T}\left(\mathbf{x}-\mu_{0}\right) \\
& \mu_{0}=\frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_{i}
\end{aligned}
$$

Empirical mean of the data

The space of all face images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
- 100×100 image $=10,000$ dimensions
- Slow and lots of storage
- But very few 10,000-dimensional vectors are valid face images
- We want to effectively model the subspace of face images

Eigenfaces example

Top eigenvectors: $u_{1}, \ldots u_{k}$

Mean: μ

slide by Derek Hoiem

Representation and reconstruction

- Face \mathbf{x} in "face space" coordinates:

$$
\begin{aligned}
\mathbf{x} & \rightarrow\left[\mathbf{u}_{1}^{\mathrm{T}}(\mathbf{x}-\mu), \ldots, \mathbf{u}_{k}^{\mathrm{T}}(\mathbf{x}-\mu)\right] \\
& =w_{1}, \ldots, w_{k}
\end{aligned}
$$

- Reconstruction:

Reconstruction

$$
P=4
$$

$$
P=200
$$

$$
P=400
$$

$P=400$

After computing eigenfaces using 400 face images from ORL face database

Application: Image compression

Original Image

- Divide the original 372×492 image into patches:
- Each patch is an instance that contains 12×12 pixels on a grid
- View each as a 144-D vector

PCA compression: 144D \rightarrow 60D

PCA compression: 144D \rightarrow 16D

16 most important eigenvectors

PCA compression: 144D) 6D

6 most important eigenvectors

PCA compression: 144D \rightarrow 3D

3 most important eigenvectors

PCA compression: 144D \rightarrow 1D

60 most important eigenvectors Bramallugyed

Looks like the discrete cosine bases of JPG!...

dictionary learning

2D Discrete Cosine Basis

http://en.wikipedia.org/wiki/Discrete_cosine_transform

Dimensionality reduction

- PCA (Principal Component Analysis):
- Find projection that maximize the variance
- ICA (Independent Component Analysis):
- Very similar to PCA except that it assumes non-Guassian features
- Multidimensional Scaling:
- Find projection that best preserves inter-point distances
- LDA(Linear Discriminant Analysis):
- Maximizing the component axes for class-separation ..
- ...

Netflix Competition

Latent Factors as Low rank matrix

- low rank factorization on Netflix data: $R \approx Q \cdot P^{T}$

Math behind Netflix

- Matrix $M \in \mathbb{R}^{n_{1} \times n_{2}}$
- Observe subset of entries
- Can we guess the missing entries?
$\left[\begin{array}{llllll}\times & ? & ? & ? & \times & ? \\ ? & ? & \times & \times & ? & ? \\ \times & ? & ? & \times & ? & ? \\ ? & ? & \times & ? & ? & \times \\ \times & ? & ? & ? & ? & ? \\ ? & ? & \times & \times & ? & ?\end{array}\right]$

Hope: only one low-rank matrix consistent with the sampled entries
Recovery by minimum complexity

$$
\begin{aligned}
\operatorname{minimize} & \operatorname{rank}(X) \\
\text { subject to } & X_{i j}=M_{i j}, \quad(i, j) \in \Omega
\end{aligned}
$$

Another application

Partition the video into moving and static parts

- Math behind:
- Change smallest number of pixels (people), make the matrix low rank (background)

