Dimensionality Reduction

Using linear algebra

Motivation

- Clustering
 - One way to summarize a complex real-valued data point with a single categorical variable
- Dimensionality reduction
 - Another way to simplify complex high-dimensional data
 - Summarize data with a lower dimensional real valued vector

Motivation

- Clustering
 - One way to summarize a complex real-valued data point with a single categorical variable
- Dimensionality reduction
 - Another way to simplify complex high-dimensional data
 - Summarize data with a lower dimentional real valued vector
 - Given data points in *d* dimensions

- Convert them to data points in *r<d* dimensions
- With minimal loss of information

Data Compression

Data Compression

Andrew Ng

Data Compression

Reduce data from 3D to 2D

Principal Component Analysis (PCA) problem formulation

Reduce from 2-dimension to 1-dimension: Find a direction (a vector $u^{(1)} \in \mathbb{R}^n$ onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find k ectors $u^{(1)}, u^{(2)}, \ldots, u^{(k)}$ onto which to project the data, so as to minimize the projection error.

Goal: Find *r*-dim projection that best preserves variance

- 1. Compute mean vector μ and covariance matrix Σ of original points
- 2. Compute eigenvectors and eigenvalues of Σ
- 3. Select top r eigenvectors
- 4. Project points onto subspace spanned by them:

$$y = A(x - \mu)$$

where y is the new point, x is the old one, and the rows of A are the eigenvectors

Covariance

- Variance and Covariance:
 - Measure of the "spread" of a set of points around their center of mass(mean)
- Variance:
 - Measure of the deviation from the mean for points in one dimension
- Covariance:
 - Measure of how much each of the dimensions vary from the mean with respect to each other
 - Covariance is measured between two dimensions
 - Covariance sees if there is a relation between two dimensions
 - Covariance between one dimension is the variance

Positive: Both dimensions increase or decrease together

Negative: While one increase the other decrease

Covariance

Used to find relationships between dimensions in high dimensional data sets

$$q_{jk} = \frac{1}{N} \sum_{i=1}^{N} \left(X_{ij} - E(X_j) \right) \left(X_{ik} - E(X_k) \right)$$

The Sample mean

Eigenvector and Eigenvalue

 $Ax = \lambda x$

A: Square Matirxλ: Eigenvector or characteristic vectorX: Eigenvalue or characteristic value

- The zero vector can not be an eigenvector
- The value zero can be eigenvalue

Eigenvector and Eigenvalue $Ax = \lambda x$ **A: Square Matirx λ: Eigenvector or characteristic vector** X: Eigenvalue or characteristic value Show $x = \begin{vmatrix} 2 \\ 1 \end{vmatrix}$ is an eigenvector for $A = \begin{vmatrix} 2 & -4 \\ 3 & -6 \end{vmatrix}$ Example Solution : $Ax = \begin{vmatrix} 2 & -4 \\ 3 & -6 \end{vmatrix} \begin{vmatrix} 2 \\ 1 \end{vmatrix} = \begin{vmatrix} 0 \\ 0 \end{vmatrix}$ But for $\lambda = 0$, $\lambda x = 0 \begin{bmatrix} 2 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$

Thus, x is an eigenvector of A, and $\lambda = 0$ is an eigenvalue.

Eigenvector and Eigenvalue

Example 1: Find the eigenvalues of

$$A = \begin{bmatrix} 2 & -12 \\ 1 & -5 \end{bmatrix}$$

$$|\lambda I - A| = \begin{vmatrix} \lambda - 2 & 12 \\ -1 & \lambda + 5 \end{vmatrix} = (\lambda - 2)(\lambda + 5) + 12$$

$$= \lambda^2 + 3\lambda + 2 = (\lambda + 1)(\lambda + 2)$$

two eigenvalues: -1, -2

Note: The roots of the characteristic equation can be repeated. That is, $\lambda_1 = \lambda_2 = \dots = \lambda_k$. If that happens, the eigenvalue is said to be of multiplicity k. Example 2: Find the eigenvalues of $\begin{vmatrix} 2 & 1 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{vmatrix}$ $\begin{vmatrix} \lambda - 2 & -1 & 0 \\ 0 & \lambda - 2 & 0 \\ 0 & 0 & \lambda - 2 \end{vmatrix} = (\lambda - 2)^3 = 0$ $\lambda = 2 \text{ is an eigenvector of multiplicity 3.}$

Input:
$$\mathbf{x} \in \mathbb{R}^D \colon \mathcal{D} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$$

Set of basis vectors: $\mathbf{u}_1, \ldots, \mathbf{u}_K$

Summarize a D dimensional vector X with K dimensional feature vector h(x)

$$h(\mathbf{x}) = \begin{bmatrix} \mathbf{u}_1 \cdot \mathbf{x} \\ \mathbf{u}_2 \cdot \mathbf{x} \\ \dots \\ \mathbf{u}_K \cdot \mathbf{x} \end{bmatrix}$$

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$$

Basis vectors are orthonormal

$$\mathbf{u}_i^T \mathbf{u}_j = 0$$
$$||\mathbf{u}_j|| = 1$$

New data representation *h(x)*

$$z_j = \mathbf{u}_j \cdot \mathbf{x}$$

 $h(\mathbf{x}) = [z_1, \dots, z_K]^T$

$$\mathbf{U} = [\mathbf{u}_1, \dots, \mathbf{u}_K]$$

New data representation *h(x)*

$$h(\mathbf{x}) = \mathbf{U}^T \mathbf{x}$$

 $h(\mathbf{x}) = \mathbf{U}^T (\mathbf{x} - \mu_0)$

The space of all face images

- When viewed as vectors of pixel values, face images are extremely high-dimensional
 - 100x100 image = 10,000 dimensions
 - Slow and lots of storage
- But very few 10,000-dimensional vectors are valid face images
- We want to effectively model the subspace of face images

Eigenfaces example

Top eigenvectors: $u_1, \dots u_k$

Mean: µ

slide by Derek Hoiem

Representation and reconstruction

• Face **x** in "face space" coordinates:

$$\mathbf{x} \to [\mathbf{u}_1^{\mathrm{T}}(\mathbf{x} - \mu), \dots, \mathbf{u}_k^{\mathrm{T}}(\mathbf{x} - \mu)] \\ = w_1, \dots, w_k$$

• Reconstruction:

 $x = \mu + w_1u_1 + w_2u_2 + w_3u_3 + w_4u_4 + \dots$

Reconstruction

After computing eigenfaces using 400 face images from ORL face database

slide by Derek Hoiem

Application: Image compression

- Divide the original 372x492 image into patches:
 - Each patch is an instance that contains 12x12 pixels on a grid
- View each as a 144-D vector

PCA compression: 144D \rightarrow 60D

PCA compression: 144D \rightarrow 16D

16 most important eigenvectors

PCA compression: 144D) 6D

6 most important eigenvectors

PCA compression: 144D \rightarrow 3D

3 most important eigenvectors

PCA compression: 144D \rightarrow 1D

60 most important eigenvectors

Looks like the discrete cosine bases of JPG!...

dictionary learning

2D Discrete Cosine Basis

http://en.wikipedia.org/wiki/Discrete_cosine_transform

Dimensionality reduction

- PCA (Principal Component Analysis):
 - Find projection that maximize the variance
- ICA (Independent Component Analysis):
 - Very similar to PCA except that it assumes non-Guassian features
- Multidimensional Scaling:
 - Find projection that best preserves inter-point distances
- LDA(Linear Discriminant Analysis):
 - Maximizing the component axes for class-separation

• ...

• ...

Netflix Competition

Latent Factors as Low rank matrix

• low rank factorization on Netflix data: $R \approx Q \cdot P^T$

f factors									
.1	4	.2							
5	.6	.5							
2	.3	.5							
1.1	2.1	.3							
7	2.1	-2							
-1	.7	.3							
	f fa .1 5 2 1.1 7 -1	f facto.145.62.31.12.172.1-1.7	f factors.14.25.6.52.3.51.12.1.372.1-2.1.7.3						

users											
1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	a
8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	
2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	[ວິເ

PT

Math behind Netflix

Hope: only one low-rank matrix consistent with the sampled entries

Recovery by minimum complexity

minimize rank(X)subject to $X_{ij} = M_{ij}, (i, j) \in \Omega$

Another application

Partition the video into moving and static parts

- Math behind:
 - Change smallest number of pixels (people), make the matrix low rank (background)