Dimensionality Reduction

Using linear algebra



Motivation

e Clustering

« One way to summarize a complex real-valued data point with a single
categorical variable

« Dimensionality reduction
« Another way to simplify complex high-dimensional data
« Summarize data with a lower dimensional real valued vector



Motivation

e Clustering

« One way to summarize a complex real-valued data point with a single
categorical variable

« Dimensionality reduction
« Another way to simplify complex high-dimensional data
« Summarize data with a lower dimentional real valued vector

e Given data points in d dimensions
« Convert them to data points in r<d dimensions

e With minimal loss of information




Data Compression
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Data Compression

Reduce data from 3D to 2D

Andrew Ng



Principal Component Analysis (PCA) problem formulation

L2
A

10 -10

Reduce from 2-dimension to 1-dimension: Find a direction (a vector (1) ¢ R”»
onto which to project the data so as to minimize the projection error.

Reduce from n-dimension to k-dimension: Find  gectors ¢, (1) 4,(2) (k)
onto which to project the data, so as to minimize the projection error.

Andrew Ng



Principal Component Analysis

Goal: Find r-dim projection that best preserves variance

1. Compute mean vector p and covariance matrix X;
of original points

2. Compute eigenvectors and eigenvalues of X
3. Select top r eigenvectors

4. Project points onto subspace spanned by them:

y= Az —p)

where y is the new point, x is the old one,
and the rows of A are the eigenvectors



Covariance

 Variance and Covariance:
« Measure of the “spread” of a set of points around their center of mass(mean)

 Variance:
« Measure of the deviation from the mean for points in one dimension

e Covariance:

o Measure of how much each of the dimensions vary from the mean with
respect to each other

e Covariance is measured between two dimensions
) |« Covariance sees if there is a relation between two dimensions
e Covariance between one dimension is the variance




positive covariance negative covariance

1 v 1
a° OCOOOQ
O 7 &)608% 8 0?8 O 8 O
£l 0%88 & ° gooag@@ &P
Y o OO e o
0 © o 080 o 0 °6® 0o 0 4
0(8 O OO o0 OO(%O
S0 & o oodb%
O o% & 8 @g ch
@ © 6 &
—1 1
= 0 1 L 0 1
X

Positive: Both dimensions increase or decrease together Negative: While one increase the other decrease



Covariance

« Used to find relationships between dimensions in high dimensional
data sets

1 X o
g = 5 3 (Xij — E(X;)) (Xax — E(X,))

1=1

The Sample mean



Eigenvector and Eigenvalue

AX = AX
A: Square Matirx

A: Eigenvector or characteristic vector
X: Eigenvalue or characteristic value

e The zero vector can not be an eigenvector
e The value zero can be eigenvalue



Eigenvector and Eigenvalue

AX = AX

A: Square Matirx
A: Eigenvector or characteristic vector
X: Eigenvalue or characteristic value

2 2 -4
Show x = i isaneigenvector for A =

3 -6
Soluti Ax > 2 X
t : — —]
olution 3 —6 1 O

1Jlo
But for A=0, Ax =0 _|=
1 0

Thus,xisaneigenvectorof A,and A =0 isaneigenvalue.



Eigenvector and Eigenvalue

Ax-Ax=0
AX=AX —
" (A-A)x=0
If we define a new matrixB: —, B=A-Al
Bx=0

BUT! an eigenvector
If B has an inverse:  —p x=B10=0 x igenv
cannot be zero!!

X will be an eigenvector of A if and only if B does
not have an inverse, or equivalently det(B)=0 :

det(A—-Al)=0




Eigenvector and Eigenvalue

Example 1: Find the eigenvalues of 2 —12
M - 4 h-2 (A =2)(A+5)+12
— Al = =(\ - +5)+
-1 A+5

=N +30+2=(A+D(A+2)

two eigenvalues: -1, — 2

Note: The roots of the characteristic equation can be repeated. Thatis, A, = A, =..= A . If
that happens, the eigenvalue is said to be of multiplicity k.

2 1 0
A=10 2 O
0 0 2

Example 2: Find the eigenvalues of

WM -4= 0 ArA-2 0 |=(A-2)=0

A =2 is an eigenvector of multiplicity 3.



Principal Component Analysis

Input: x € RP: D;{Xl,...,xN}

Set of basis vectors: u;,..., ug

Summarize a D dimensional vector X with K dimensional
feature vector h(x)

u; - X
Uo - X

h(x) =




Principal Component Analysis

U= [U‘la"'auK]
Basis vectors are orthonormal
u;-ruj = ()
|lu;f| =1
New data representation h(x)
Zj — Uj - X

h(x)=[z1,...,2K]"



Principal Component Analysis

U:[ul,...,uK]

New data representation h(x)
h(x) =U'x

h(x) = U" (x — po)

. _ 15N
Empirical mean of the data I’LO — N Z’L:]. X’L



The space of all face images

e When viewed as vectors of pixel values, face images are
extremely high-dimensional
— 100x100 image = 10,000 dimensions

— Slow and lots of storage

e But very few 10,000-dimensional vectors are valid face

images

e We want to effectively model the subspace of face images
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Eigenfaces example

Top eigenvectors: uy,...u,

Mean: u

A . I 2% i
slide by Derek Hoiem



Representation and reconstruction

« Face x in “face space” coordinates:

T e )i (x - )

 Reconstruction:
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Reconstruction

P = 400

After computing eigenfaces using 400 face
iImages from ORL face database

slide by Derek Hoiem



Application: Image compressmn

Original Image

e Divide the original 372x492 image into patches:
e Each patch is an instance that contains 12x12 pixels on a grid
e View each as a 144-D vector
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PCA compression: 144D - 60D

)

.
’
’ Q.r\




PCA compression: 144D = 16D
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6 most important eigenvectors

2 2 2
4 4 4
6 6 6
8 8 8
10 10 10
12 12 12
2 4 6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12

o o A~ DN
o o A~ DN
oo o A~ DN

10
12

10 10

12 12
6 8 10 12 2 4 6 8 10 12 2 4 6 8 10 12




PCA compression: 144D - 3D




3 most important eigenvectors

|




PCA compression: 144D - 1D
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60 most important eigenvectors
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Looks like the discrete cosine bases of JPG!...




dictionary learning

noise
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2D Discrete Cosine Basis
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http://en.wikipedia.org/wiki/Discrete_cosine_transform



Dimensionality reduction

o PCA (Principal Component Analysis):
« Find projection that maximize the variance

o ICA (Independent Component Analysis):
« Very similar to PCA except that it assumes non-Guassian features

o Multidimensional Scaling:
o Find projection that best preserves inter-point distances

o LDA(Linear Discriminant Analysis):
« Maximizing the component axes for class-separation



Netflix Competition

480,000 users

Matrix R
36
17,700
movies
Training Data Set Test Data Set

! l—True rating of
B n 2 user x on item i
SSE = Z(i,x)ER (rxi o 7‘xi)

Predicted ratina



Latent Factors as Low rank matrix

@ low rank factorization on Nefflix data: R ~ Q - P!

f factors
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Math behind Netflix

x 7 7 7 x 7
? ? ) D
: X X !

@ Matrix M € R">m oo :
. x 7 7 x ?
@ Observe subset of entries 2 9w 2 2
@ Can we guess the missing entries? « 2 9 5 o o
77 x o ox 7 ¢

Hope: only one low-rank matrix consistent with the sampled entries )

Recovery by minimum complexity

minimize rank(X)
subjectto X =M;;, (i,j) €



Another application

@ Partition the video into moving and static parts

“ " —
»
‘ ‘
’ — -
e = T
,g 3

 Math behind:

e Change smallest number
of pixels (people), make
the matrix low rank
(background)



